
Formally verified asymptotic consensus
in robust networks

Mohit Tekriwal, Avi Tachna-Fram, Jean-Baptiste Jeannin,
Manos Kapritsos, and Dimitra Panagou

University of Michigan, Ann Arbor, MI 48109, USA
{tmohit, avitf, jeannin, manosk, dpanagou}@umich.edu

Abstract. Distributed architectures are used to improve performance
and reliability of various systems. Examples include drone swarms and
load-balancing servers. An important capability of a distributed architec-
ture is the ability to reach consensus among all its nodes. Several consen-
sus algorithms have been proposed, and many of these algorithms come
with intricate proofs of correctness, that are not mechanically checked.
In the controls community, algorithms often achieve consensus asymp-
totically, e.g., for problems such as the design of human control systems,
or the analysis of natural systems like bird flocking. This is in contrast
to exact consensus algorithm such as Paxos, which have received much
more recent attention in the formal methods community.

This paper presents the first formal proof of an asymptotic consensus al-
gorithm, and addresses various challenges in its formalization. Using the
Coq proof assistant, we verify the correctness of a widely used consen-
sus algorithm in the distributed controls community, the Weighted-Mean
Subsequence Reduced (W-MSR) algorithm. We formalize the necessary
and sufficient conditions required to achieve resilient asymptotic con-
sensus under the assumed attacker model. During the formalization, we
clarify several imprecisions in the paper proof, including an imprecision
on quantifiers in the main theorem.

Keywords: Resilient asymptotic consensus · W–MSR algorithm · Net-
work robustness.

1 Introduction

To enhance reliability, robustness and performance, many modern systems use a
distributed architecture, composed of multiple nodes communicating with each
other. Examples range from coordinated control of multi-robot systems such as
swarms of mobile and aerial robots, to load-balancing among servers answering
many queries per second. A fully decentralized system, where decisions are made
collectively by the nodes rather than by one master node, greatly improves reli-
ability by ensuring there is no single point of failure in the system. A distributed
architecture also provides greater performance (depending on the context, in
terms of load capacity, reduced latency, smaller communication overhead, etc.)

2 M. Tekriwal et al.

than any single node could ever achieve. Distributed architectures are supported
by distributed algorithms, which particularly focus on carefully handling situa-
tions where some nodes become faulty, stop responding, or become malicious.

One central aspect of distributed algorithms is the ability to achieve consen-
sus. Consensus is said to be achieved in a network if all normal (correct) nodes
agree on a certain value, where a node is normal if it is not faulty [34]. The
value agreed upon by all nodes can be a reference point for the next position
of a swarm, or the sequence of commands executed by a set of replicas in State
Machine Replication [44]. Consensus has been studied extensively in different
communities. In the distributed computer systems communities, some promi-
nent algorithms achieving consensus are Paxos [29], MultiPaxos [47], Raft [36],
and Practical Byzantine Fault Tolerance (PBFT) [6]. However, these algorithms
deal with the problem of exact consensus. There are many scenarios where exact
consensus is not achievable, ranging from the design of human controlled sys-
tems to analysis of natural systems like bird flocking. These problems have to be
solved under harsh environmental restrictions such as restricted communication
abilities and presence of communication uncertainty. Therefore, these problems
warrant the study of asymptotic consensus problems, which unlike exact con-
sensus, do not require strong assumptions on the underlying network [16].

This paper presents the first formal proof of an asymptotic consensus al-
gorithm, by formalizing the Weighted-Mean Subsequence Reduced (W-MSR)
algorithm [30, 50]. The problem of asymptotic consensus is of much importance
to the distributed robotics and controls community, who have studied algorithms
like the Mean Subsequence Reduced (MSR) algorithm [27] and its recent exten-
sion W-MSR. These algorithms are designed to achieve asymptotic consensus in
partially connected groups of nodes, but have not been formally verified. Formal
verification of consensus algorithms is important as has been emphasized by the
distributed computer systems community, who have long invested in producing
mechanically checked proofs of its consensus protocols. The controls commu-
nity, however, lags behind in this direction. In recent years, the distributed sys-
tems community has embraced formal methods to provide mechanically-checked
proofs of its consensus protocols and their implementations, using a wide range
of techniques from interactive and automated theorem proving [48, 25, 8, 5, 18,
9, 31] to automatic generation of inductive invariants [33, 21, 49, 20]. In the dis-
tributed robotics and controls community however, researchers usually prove
their consensus protocols with paper proofs, using mathematical analysis based
on Lyapunov theory and its extensions, without computer-checked formaliza-
tions. As we show in this paper, our formalization of asymptotic consensus for
the W-MSR algorithm [30] reveals imprecisions in the placement of quantifiers
in the main theorem and several missing pieces in the proof, thereby highlight-
ing the importance of machine-checked proofs. Thus a significant contribution
of our work is providing the first mechanically checked formalism of the asymp-
totic consensus and its application to the W-MSR algorithm, widely used in the
controls community. We have chosen to formalize this algorithm since it is a
widely-used algorithm for resilient consensus [42, 41, 46]. From the perspective

Formally verified asymptotic consensus in robust networks 3

of practical applications, enabling resilient consensus in the presence of misbe-
having or faulty nodes is desirable for many applications in autonomous systems
and robotics, e.g., for coordinated control of multi-robot systems.

The MSR and W-MSR algorithms are very different from exact consensus
algorithms such as MultiPaxos, Raft or PBFT. As such our formal verification
of the correctness of W-MSR uses different techniques than previous proofs of
exact consensus algorithms. The first major difference is that MSR and W-MSR
guarantee asymptotic consensus rather than finite-time consensus. A second ma-
jor difference is that MSR and W-MSR provide consensus in networks that are
not fully connected : two normal nodes might not be able to communicate with
each other directly, but might have to rely on another (possibly faulty) node to
forward their messages to each other. This last property is crucial to model multi-
robot systems where complete communication between any two robots may not
be feasible at all times. Because of those differences, providing a mechanically-
checked proof of W-MSR requires the development and use of different tech-
niques than the ones typically used to mechanically check Multipaxos, Raft or
PBFT. In particular, our formalization crucially relies on formalization of limits
and real analysis, because many of the techniques used in model-checking or for
generating invariants are not well-suited to prove asymptotic properties.

Contributions: The original contribution of this work is the formalization in
the Coq theorem prover of the convergence results of the W-MSR algorithm [30].
Specifically, we provide a machine-checked concrete counterexample for the proof
of necessity, a clean proof of Lemma 1 and the Coq formalization of the main the-
orem (Theorem 1). We also fill in several missing details and clarify imprecisions
in the proof of sufficiency, which can be viewed as an addition to the existing
proof [30]. Additionally, this is, to our knowledge, the first mechanical formal-
ization of a consensus algorithm where the consensus is obtained asymptotically,
opening the door to more such proofs.

This paper is organized as follows. In Section 2, we discuss the problem
setup and define terminologies related to graph topology and the W–MSR al-
gorithm [30]. In Section 3, we discuss the formalization of the necessary and
sufficient conditions in Coq, for achieving resilient asymptotic consensus. We
also discuss some specific challenges we encountered during the formalization.
After reviewing some related work in Section 4, we conclude in Section 5 by
discussing key takeaways from our work and generic challenges we encountered
during the formalization. We also lay down a few directions that could be ad-
dressed in future work.

2 Preliminaries

In this paper we consider the problem of formalizing consensus in a network,
and adopt the problem formulation from [30]. While the original paper discusses
consensus in a distributed control graph for both malicious and byzantine threat
models for both time-varying and time-invariant graph structures, we limit our
formalization to the case of a time-invariant graph for a malicious threat model
and for a particular threat scope: F-total, where the total number of malicious

4 M. Tekriwal et al.

nodes in the control graph is bounded. We will next discuss briefly what each of
these highlighted terms means in the context of the following problem.

2.1 Problem formulation

Consider a network that is modeled by a digraph (directed graph), D = (V, E),
where V = {1, . . . , n} is the node set and E ⊂ V × V is the directed edge set.
The node set is partitioned into a set of normal nodes N , and a set of adversary
nodes A, which are unknown a priori to the normal nodes. Each directed edge
(j, i) ∈ E models information flow and indicates that node i can be influenced
by (or receive information from) node j at time-step t. The set of in-neighbors
of node i is defined as Vi = {j ∈ V|(j, i) ∈ E}. Intuitively, the set of in-neighbors
contains all neighboring nodes of i, such that the direction of information flow
is from those nodes to i. The cardinality of the set of in-neighbors is called the
in-degree, di = |Vi|. Since each node has access to its own value at time-step t,
we also consider a set of inclusive neighbors of node i, denoted by Ji = Vi ∪{i}.

2.2 Threat Model

As discussed earlier, we formalize a threat model (F-total malicious model [30])
in which every adversary node in the graph is malicious, and there exists an
upper bound F on the number of malicious agents in the graph, i.e., the set
of adversary nodes are F -totally bounded. In the context of the problem in
Section 2.1, some relevant formal definitions pertaining to the threat model are
stated as:

Definition 1 (Malicious node [30]). A node i ∈ A is called Malicious if it
sends the same value xi(t) to all its neighbors at each time step t, but applies a
different update function f ′

i(.) at some time step.

Definition 2 (F-total set [30]). A set S ⊂ V is F-total if it contains at most
F nodes in the network, i.e., |S| ≤ F , F ∈ Z≥0.

Definition 3 (F-totally bounded [30]). A set of adversary nodes is F-totally
bounded if it is an F-total set.

Note that while Definitions 2 and 3 may appear similar, they define different
terminologies. Definition 2 defines an F-total set with at most F nodes in a
network. Definition 3 specializes this to a set of adversary nodes saying that
there are at most F adversarial nodes in a network.

2.3 Robust network topologies

The ability of a set of normal nodes in a control graph to achieve consensus
depends on its ability to make local decisions effectively. Le Blanc et al. [30]
defined a topological property called network robustness for reasoning about the
effectiveness of purely local algorithms to succeed, which we formalize in Coq.
In particular, they define a property called (r, s)-robustness, which is stated as:

Formally verified asymptotic consensus in robust networks 5

Definition 4 ((r, s)-robustness [30]). : A digraph D = (V, E) on n nodes
(n ≥ 2) is (r, s)-robust, for nonnegative integers r ∈ Z≥0, 1 ≤ s ≤ n, if for
every pair of nonempty, disjoint subsets S1 and S2 of V at least one of the
following holds (i) |X r

S1
| = |S1|; (ii) |X r

S2
| = |S2|; (iii) |X r

S1
|+ |X r

S2
| ≥ s, where

X r
Sk

= {i ∈ Sk : |Vi\Sk| ≥ r} for k ∈ {1, 2}.

The condition (iii) states that there are a total of at least s nodes from the union
of sets S1 and S2, such that each of those nodes have at least r nodes outside
of their respective sets in the union S1 ∪S2. The idea is that “enough” nodes in
every pair of nonempty, disjoint sets S1,S2 ⊂ V have at least r neighbors outside
of their respective sets. This ensures that the network is well connected, and that
loss of information from a node due to malicious attack does not affect the whole
network. Figure 1 illustrates an example of a network with (2, 2) robustness.

𝑆! 𝑆"

….

𝑆! ∪ 𝑆"

(𝑎) (𝑏)

Fig. 1. Illustration for (2, 2) robustness. In the illustration (a), every node of the set
S2 has 2 neighboring nodes outside S2. Similarly every node in the set S1 has at least
2 neighboring nodes outside S1. In the illustration (b), there are 2 nodes in the union
S1∪S2 that have 2 neighbors outside the set. Note that the sets S1 and S2 are disjoint.

2.4 Update model for the normal nodes

In this paper, we formalize a consensus algorithm, called the W–MSR algo-
rithm [30]. This algorithm provides an update model for the normal nodes in
the network. A schematic of the algorithm is illustrated in Figure 2. We denote
the value emitted by node i at time t as xi(t), and the value of the directed
weighted edge from node j, to node i at time t as wij(t). The value xi(t) could
represent a measurement like position, velocity, or it could be an optimization
variable. The quantity xi

j(t) is the information that the jth node in the neigh-
boring set of node i sends to the node i. Each node also has a varying set of
neighbors which it ignores that we denote as Ri(t). The set Ri(t) changes be-
cause the nodes are removed depending on their value with respect to the value
of node i at time t. In this algorithm, the updated value of a normal node i
at time t + 1 is the convex sum of the values of its neighboring set including
itself. Hence, xi(t+1) =

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t), where we assume the existence

of a constant α ∈ R, such that 0 < α < 1, and the weights wij(t) satisfy the
conditions:

6 M. Tekriwal et al.

1. wij(t) = 0 whenever j /∈ Ji;
2. wij(t) ≥ α,∀j ∈ Ji; and
3.

∑
j∈Ji\Ri(t)

wij(t) = 1

for all i ∈ N , and t ∈ Z≥0. It is important to note that the third condition
depends on the set of removed nodes, which may change over time. In order to
satisfy this condition the values of the weights may need to change over time.

The choice of neighboring sets in the W–MSR algorithm is defined as follows:

1. At each time-step t, each normal node i obtains the values of its neighbors,
and forms a sorted list

2. If there are fewer than F nodes with values strictly greater than the value
of i, then the normal node removes all those nodes. Otherwise, it removes
precisely the largest F values in the sorted list. Likewise, if there are less
than F nodes with values strictly less than the normal node i, the normal
node removes all such nodes. Otherwise, it removes precisely the smallest F
nodes in the sorted list.

Node 𝑖𝑖

𝑥𝑥𝑗𝑗𝑖𝑖(𝑡𝑡)

𝑥𝑥𝑗𝑗𝑖𝑖(𝑡𝑡)

Node 𝑖𝑖

Remove top F nodes
with values greater than
or equal to the value of
node 𝑖𝑖. If there are less
than F nodes with values
greater than the value of
node 𝑖𝑖, all of them are
removed

Remove bottom F nodes
with values less than or
equal to the value of
node 𝑖𝑖. If there are less
than F nodes with values
less than the value of
node 𝑖𝑖, all of them are
removed

Neighboring
nodes are
sorted in
ascending
order.

The order is
decided by
their values
w.r.t the value
of node 𝑖𝑖

Fig. 2. Schematic of the W-MSR update. At time t, the node i obtains values from
its neighbors and forms a sorted list. The algorithm then removes the largest and the
smallest F nodes in the sorted list, or if there are less than F nodes with values strictly
greater than or less than the value of i, the algorithm removes all those nodes.

An important point to note here is that the above update model holds only for
the normal nodes, i.e., i ∈ N . The update function for adversary nodes, i.e.
i ∈ A, and their influence on the normal nodes depend on the threat model. We
will next discuss the formalization of the W–MSR algorithm in Coq.

3 A formal proof of consensus for the W–MSR algorithm

Theorem 1. [30] Consider a time-invariant network modeled by a digraph
D = (V, E) where each normal node updates its value according to the W–MSR
algorithm with parameter F . Under the F-total malicious model, resilient asymp-
totic consensus is achieved if and only if the network topology is (F + 1, F + 1)-
robust.

Formally verified asymptotic consensus in robust networks 7

The proof of this theorem requires us to prove both a sufficiency and a necessity
condition. The original paper proof relies on a safety condition, which provides
an invariant condition that must hold at all times in the state update. We will
next discuss the proof of the safety condition (Section 3.1), then sufficiency
(Section 3.2) and necessity (Section 3.3) conditions individually.

3.1 Proof of the safety condition in W-MSR

Lemma 1 (Safety condition). [30] Suppose each node updates its value ac-
cording to the W-MSR algorithm with parameter F under the F-total malicious
model. Then for each node i ∈ N , xi(t + 1) ∈ [m(t),M(t)], regardless of the
network topology.

Here, m(t) = mini∈N {xi(t)} and M(t) = maxi∈N {xi(t)}. Note that the
original paper [30] does not provide a proof of this lemma, and our proof, which
we formalize in this paper, is an original contribution. We provide a detailed
proof of the lemma by explicitly enumerating the cases from the definition of
the W-MSR algorithm. On the other hand, the original paper [30] merely states
an outline, making a careful check of the proof difficult.

Proof. We prove Lemma 1 by showing inductively, that at each time t, and for
every normal node i, there exists a node j1 ∈ Ji ∩ N such that ∀k ∈ Ji \
Ri(t), xj1(t) ≤ xk(t), thus:

xi(t+ 1) =
∑

j∈Ji\Ri(t)

wij(t)x
i
j(t) ≥

∑
j∈Ji\Ri(t)

wij(t)x
i
j1(t) = xi

j1(t) ≥ m(t) (1)

Symmetrically there exists a j2 ∈ Ji∩N such that ∀k ∈ Ji\Ri(t), xj2(t) ≥ xk(t).
Thus, the symmetric inequality xi(t+1) ≤ M(t), holds for the same reason. Since
the proof of the existence of j1 and j2 are nearly identical, we only show the
proof of the former in Appendix A of the extended version [45].

Formalization in Coq: We formalize Lemma 1 in Coq as:

Lemma lem_1: ∀ (i:D) (t:nat) (mal:nat → D → R) (init:D → R)
(A:D → bool) (w:nat → D ∗D → R),
F_total_malicious mal init A w →
wts_well_behaved A mal init w →
i ∈ Normal A → ((x mal init A w (t+1) i ≤ M mal init A w t)
∧ (m mal init A w t ≤ x mal init A w (t+1) i)).

The definition of F total malicious states that the model is F-total malicious
if the set of adversary nodes are F-totally bounded (i.e., there are at most F
adversary nodes in the network) and all the adversary nodes are malicious. Here
A: D → bool is a tagging function. If A i == true, then i is classified as an
Adversary node else it is classified as a Normal node. mal : nat → D → R is an
arbitrary update function for a malicious node. Since we do not know beforehand,
how this function would look like, we assume it as a parameter. The function
init : D → R is an initial value associated with a node. We define a malicious
node in Coq as that node in the graph for which the normal update model does
not hold, i.e., there exists a time t such that xi(t+1) ̸=

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t).

8 M. Tekriwal et al.

(** Condition for a node to have malicious behavior at a given time **)

Definition malicious_at_i_t (mal:nat → D → R) (init:D → R) (A:D → bool)
(w:nat → D ∗D → R) (i:D) (t:nat): bool :=
(x mal init A w (t+1) i) !=

∑
j∈Ji\Ri(t)

((x mal init A w t j) ∗ (w t (i,j)))

(** Define maliciousness **)

Definition malicious (mal:nat → D → R) (init:D → R) (A:D → bool)
(w:nat → D ∗D → R) (i:D) := ∃ t:nat, malicious_at_i_t mal init A w i t.

The second hypothesis wts well behaved states that we respect those three
conditions on weights that we discussed in Section 2.4. The assignment of weights
depend on whether a node j ∈ Ji\Ri(t) or not. Here, Ji denotes the inclusive
set of neighbors of the node i. Ri(t) denotes the removed set of nodes according
to the W–MSR algorithm, and we define Ri(t) in Coq as follows

Definition remove_extremes (i:D) (l:seq D) (x:D → R) : (seq D) :=
filter (fun (j:D) ⇒
(((Rge_dec (x j) (x i)) || (F ≤ (index j l))) && (Rle_dec (x j) (x i)
|| (index j l ≤ ((size l) − F − 1))))) l.

Note that we use the filter function from the MathComp sequence library. This is
crucial as it gives us lemmas that allow us to assert that any node in Ji \ Ri(t)
satisfies the conditions of the filter. Additionally, the filter function requires that
its first argument has a pred type, D → bool in our case. Therefore, we need
our inequality operations to be decidable. Hence, we used the decidable versions
of the inequality operations, such as Rle dec, provided by Coq’s reals library
instead of it’s built-in ≤ operation. We then define the set Ji \ Ri(t) in Coq as

Definition incl_neigh_minus_extremes

(i:D) (x:D → R) : (seq D) := remove_extremes i (inclusive_neighbor_list i x) x.

Since Ji\Ri(t) is defined based on the value of node i, xi(t), which indeed
depends on A, mal, init. Hence, wts well behaved depends on A, mal, init.

The trickiest parts of the proof of Lemma 1 rely on the fact that we desire
Ji \ Ri(t) when treated as a list to be sorted. In order to fulfill this condition
we use the formalization for sorting found in the MathComp library. To do this
we first define a relation on D as:

Definition sorted_Dseq_rel (x: D → R) (i j : D) :=
if Rle_dec (x i) (x j) then

if (x i = = x j) then (index i (enum D) ≤ index j (enum D)) else true

else false.

This definition ensures that if xi(t) < xj(t), then i is ordered as less than j with
respect to this relationship. In the case of nodes with equivalent values we use an
arbitrary mechanism to break ties. Doing so ensures that this relation is total,
and satisfies transitivity, anti-symmetry, and reflexivity. This relation lets us use
the sorting lemmas in MathComp’s path library [13], and it ensures the weaker
condition that we occasionally use in the proof:

Definition sorted_Dseq (x:D → R) (l:seq D) :=
∀ (a b:D), a ∈ l → b ∈ l → (index a l < index b l) → (x a ≤ x b).

Formally verified asymptotic consensus in robust networks 9

The biggest difficulty with formalizing this proof arises when dealing with the
case that |R<

i (t)| < F , whereR<
i (t) := {j ∈ Ji : xj(t) < xi(t) and idxJi

(xj(t)) <
F}, and define idxl(xk(t)), to be the index of the value xk(t) in a given list l
of values, or the size of l if xk(t) is not present.. In particular, showing that
idxJi\Ri(t)(j) = 0 =⇒ nj(Ji) = |R<

i (t)|. This requires proving an extra lemma
on the Ji list:

Lemma partition_incl: ∀ (i:D) (t:nat) (mal:nat → D → R)
(init:D → R) (A:D → bool) (w:nat → D ∗D → R),
inclusive_neighbor_list i (x mal init A w t) =
(sort ((sorted_Dseq_rel (x mal init A w t)))
(enum (R_i_less_than mal init A w i t))) + +

(incl_neigh_minus_extremes i (x mal init A w t)) + +
(sort ((sorted_Dseq_rel (x mal init A w t)))
(enum (R_i_greater_than mal init A w i t))).

With this lemma, we can reason that the zero-th index of Ji \ Ri(t), is the
|R<

i (t)|-th index of Ji. Using this lemma, we can prove the existence of j1 in
the proof of lem 1. Symmetrically, we can show the existence of j2 such that
∀k ∈ Ji \ Ri(t), xj2(t) ≥ xk(t). Tying it all together, we complete the proof of
the lemma lem 1 in Coq.

3.2 Proof of Sufficiency

Lemma 2. [30] Consider a time-invariant network modeled by a digraph D =
(V, E) where each normal node updates its value according to the W–MSR al-
gorithm with parameter F . Under the F-total malicious model, if a network is
(F+1, F+1) robust, resilient asymptotic consensus is achieved.

This is an important lemma because we would like to design a network such that
the normal nodes in the network reach an asymptotic consensus in the presence
of malicious nodes in the network. Next we will discuss an informal proof of the
Lemma 2 followed by its formalization in the Coq proof assistant.

Proof. The proof of Lemma 2 is done by contradiction. We start by assuming
that the limits AM and Am of the functions M(t) and m(t) respectively are
different, i.e., AM ̸= Am. The limits AM and Am of the functions M(t) and m(t),
respectively, exist becauseM(t) andm(t) are both continuous and monotonously
decreasing functions of t. Therefore, by definition of limits for M(t) and m(t),
we know that ∀ t, AM ≤ M(t) ∧ m(t) ≤ Am, as illustrated in Figure 3. We
will show that by carefully constructing the sets S1 and S2 in the definition of
(r, s)-robustness, and unrolling the definition of (r, s)-robustness at every time-
step inductively, we eventually arrive at the desired contradiction: ∃ t, M(t) <
AM ∨ Am < m(t). We discuss the details of the proof in Appendix B of the
extended version [45].

Formalization in Coq: We introduce the following axiom in Coq to support
reasoning by contradiction.

10 M. Tekriwal et al.

𝐴𝐴𝑀𝑀

𝐴𝐴𝑚𝑚𝑚𝑚(𝑡𝑡)

𝑀𝑀(𝑡𝑡) 𝐴𝐴𝑀𝑀 + 𝜖𝜖

𝐴𝐴𝑚𝑚 − 𝜖𝜖

𝑡𝑡𝜖𝜖
𝑡𝑡 ≥ 𝑡𝑡𝜖𝜖

Fig. 3. Illustration of the tube of convergence bounded above by AM + ϵ and bounded
below by Am − ϵ. We observe the behavior of functions M(t) and m(t) inside this tube
of convergence ∀t ≥ tϵ. We prove that M(t) and m(t) are monotonous ∀t ≥ tϵ, and
they approach the limits AM and Am, respectively. We start by assuming that AM ̸=
Am, but later prove that AM = Am by contradiction, thereby proving asymptotic
consensus.

Axiom proposition_degeneracy : ∀ A : Prop, A = True ∨ A = False.

This is a propositional completeness lemma that allows us to reason classically
and is consistent with the formalization of classical facts in Coq’s standard li-
brary. We need this lemma because we prove the sufficiency condition using
contradiction. We are choosing to use classical reasoning because the original
paper [30] does not provide a constructive proof. The reasoning used in the
paper is classical. This requires us to state the following lemma in Coq

Lemma P_not_not_P: ∀ (P:Prop), P ↔ ¬(¬ P).

The proof of P not not P uses the axiom proposition degeneracy.
We state the sufficiency condition (Lemma 2) for the network to achieve resilient
asymptotic consensus as the following in Coq.

Lemma strong_sufficiency:
∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w: nat → D ∗D → R),
nonempty_nontrivial_graph →
(0 < F+1 ≤ |D|)%N →
wts_well_behaved A mal init w →
r_s_robustness (F + 1) (F + 1) →
Resilient_asymptotic_consensus A mal init w.

The sufficiency condition requires that the graph is non-trivial, i.e., there are at
least two nodes in the graph, and the number of faulty nodes F in the graph is
bounded by the total number of nodes D. We define r s robustness in Coq as

Definition r_s_robustness (r s:nat):=
nonempty_nontrivial_graph ∧ ((1 ≤ s ≤ |D|) →

Formally verified asymptotic consensus in robust networks 11

∀ (S1 S2: {set D}),
(S1 ⊂ Vertex ∧ (|S1|>0)) →
(S2 ⊂ Vertex ∧ (|S2|>0)) →
[disjoint S1 & S2] →
((| Xi_S_r S1 r| = = |S1|) ||((| Xi_S_r S2 r| = = |S2|) ||

(| Xi_S_r S1 r| + |Xi_S_r S2 r| ≥ s)))).

where Xi S r S1 r is the set of all nodes in the set S1 such that all of its nodes
have at least r neighboring nodes outside S1. In Coq, we define Xi S r as

Definition Xi_S_r (S: {set D}) (r:nat):=
[set i:D | i ∈ S & (| (in_neighbor i) − S| ≥ r)].

We define Resilient asymptotic consensus in Coq as

Definition Resilient_asymptotic_consensus

(A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R):=
(F_total_malicious mal init A w) → (∃ L:Rbar, ∀ (i:D),
i ∈ (Normal A) → is_lim_seq (fun t: nat ⇒ x mal init A w t i) L) ∧
(∀ t:nat, (m mal init A w 0 ≤ m mal init A w t) ∧
(M mal init A w t ≤ M mal init A w 0)).

Here, is lim seq is a predicate in Coquelicot that defines limits of sequences.
Rbar is the extended set of reals, which includes +∞ and −∞. To prove that the
network achieves resilient asymptotic consensus under the (F +1, F +1)- robust-
ness condition, we need to prove the following two conditions in the definition
of Resilient asymptotic consensus: (i) ∀t,m(0) ≤ m(t)∧M(t) ≤ M(0), and
(ii) ∃L,∀i, i ∈ N → lim

t→∞
xi(t) = L. We state the first subproof as the lemma

statement interval bound in Coq. The proof of lemma interval bound is a
consequence of Lemma 1. We prove this lemma by an induction on time t and
then apply Lemma 1 to complete the proof.

We prove the second subproof by contradiction in Coq. To start the proof of
contradiction, we need to assume that the limits AM and Am of the maximum
and minimum functionsM(t) andm(t) are different. We then instantiate the sets
S1 and S2 in the definition of (r, s)- robustness with XM (tϵ, ϵo) and Xm(tϵ, ϵo)
respectively, where XM (t, ϵl) = {i ∈ V : xi(t) > AM − ϵl} and Xm(t, ϵl) = {i ∈
V : xi(t) < Am + ϵl}. In Coq, we define the sets XM for any epsilon and t as
follows

Definition X_m_t_e_i (e_i: R) (A_m :R) (t:nat) (mal : nat → D → R) (init : D → R)
(A: D → bool) (w: nat → D ∗D → R) :=
[set i:D | Rlt_dec (x mal init A w t i) (A_m + e_i)].

where Rlt dec is Coq’s standard decidability lemma for less than operation.
We need to prove that the sets XM and Xm are disjoint at all times till we

reach a point when either XM or Xm are empty. This requires us to prove the
following lemma in Coq

Lemma X_M_X_m_disjoint_at_j

(mal : nat → D → R) (init: D → R) (A: D → bool) (w: nat → D ∗D → R):
∀ (t_eps l:nat) (a A_M A_m :R) (eps_0 eps :posreal),

12 M. Tekriwal et al.

(A_M − (eps_j l eps_0 eps a) > A_m + (eps_j l eps_0 eps a)) →
[disjoint (X_M_t_e_i (eps_j l eps_0 eps a) A_M (t_eps+l) mal init A w) &
(X_m_t_e_i (eps_j l eps_0 eps a) A_m (t_eps+l) mal init A w)].

Since Xm(tϵ+ l, ϵl) is a set of all nodes with values at least, AM −ϵl and Xm(tϵ+
l, ϵl) is a set of all nodes with values at most Am + ϵl, these two sets are disjoint
if AM − ϵl > Am + ϵl. For l = 0, we have defined ϵo such that AM − ϵo >
Am + ϵo. To prove that AM − ϵl > Am + ϵl,∀l, 0 < l, we need to show that
AM − ϵl > AM − ϵo and Am + ϵo > Am + ϵl. This would indeed require us to
show that ϵl < ϵo,∀l, 0 < l. This holds since we had defined ϵl recursively as
ϵl := αϵl−1 + (1− α)ϵ.

A crucial aspect of the sufficiency proof is proving that the (F + 1, F + 1)-
robustness implies that there exists a node in the union of the set XM ∩N and
Xm∩N such that it has at least F+1 nodes outside the set. This was particularly
challenging because in the original paper [30], the authors do not use all three
conditions in the definition of (F + 1, F + 1) robustness condition to informally
prove the implication. They use only the third condition (F + 1 ≤ |XF+1

XM
| +

|XF+1
Xm

|) to state the implication, while leaving it up on the readers to connect
the missing dots with the first two conditions. For the implication to hold, all
three conditions in the definition of (F + 1, F + 1)- robustness should imply the
existence of such a node since there is an or in the definition of (F + 1, F + 1)-
robustness connecting the three conditions. To prove the implication from the
first two conditions, we need to first prove the existence of a normal node in the
sets XM and Xm for all l ≤ N . This holds since the node i with value M(tϵ + l)
will always be above the threshold AM − ϵl because M(t) ≥ AM ,∀t due to the
existence of the limit AM . Hence, 0 < |XM (tϵ + l, ϵl)|,∀l ≤ N . Since the first
condition of (F+1, F+1)- robustness states that |XF+1

XM (tϵ+l,ϵl)
| = |XM (tϵ+l, ϵl)|,

0 < |XF+1
XM (tϵ+l,ϵl)

|. Hence by definition of XF+1
XM (tϵ+l,ϵl)

, there exists a normal node

in the set XM (tϵ+l, ϵl) such that it has at least F+1 nodes outside XM (tϵ+l, ϵl).
We prove this formally in Coq using the following lemma statement

Lemma X_m_normal_exists_at_j (t_eps l N: nat) (a A_m: R)(eps_0 eps:posreal)
(mal : nat → D → R) (init : D → R) (A: D → bool) (w: nat → D ∗D → R):
F_total_malicious mal init A w →
wts_well_behaved A mal init w →
(0 < F + 1 ≤ |D|) →
is_lim_seq [eta m mal init A w] A_m →
(0 < N) → (l ≤ N) → (0 < a < 1) → (eps < aN / (1 − aN) ∗ eps_0) →
∃ i:D, i ∈ (X_m_t_e_i (eps_j l eps_0 eps a) A_m (t_eps + l) mal init A w) ∧

i ∈ Normal A.

By symmetry, we prove that 0 < |XF+1
Xm(tϵ+l,ϵl)

|. The other part that was not

explicit from the paper proof in the original paper [30] was that the largest
value that the node i uses at time step tϵ + l is M(tϵ + l), which is provided
without proof. This was a challenge during our formalization. To formally prove
this we had to split the neighbor set of i into two parts depending on their
relative position with respect to i. While it is easy to bound the values of the

Formally verified asymptotic consensus in robust networks 13

nodes positioned in the left side of i with M(tϵ + l) since the neighboring list is
assumed to be sorted at the time of update and we have established this upper
bound for any normal node from lemma 1, bounding the values for the nodes
positioned in the right of the normal node i was not trivial. We proved this using
a case analysis on the cardinality of the set R>

i (t). In Coq, we formally prove
this using the lemma statement x right ineq 1 in Coq. We do not expand on
this lemma here for brevity.

Another challenge during the formalization was using the bound of the neigh-
boring node of i, AM − ϵl in the update of the value of i at the next time step.
We know that the neighbors outside the set Ji(tϵ + l)\XM (tϵ + l, ϵl) have value
at most AM −ϵl. But to use these nodes in the update function, we need to show
that these neighboring nodes are in the inclusive set of the normal node i minus
the extremes, i.e, there exists a node in the intersection of the sets Ji(tϵ+ l) and
the set s which contains nodes outside the set Ji(tϵ + l)\XM (tϵ + l, ϵl).We prove
the existence of such a node using the following lemma statement in Coq

Lemma exists_in_intersection: ∀ (A B: {set D}) (s: seq D) (F:nat),
| s| = (F+1)%N → (|B| ≤ F)%N →
{subset s <= A − B} → ∃ x:D, x ∈ [set x | x ∈ s] ∩ A.

We instantiate the set A with Ji\Ri(t) and the set B with R<
i (t). We know

that by definition of the W–MSR algorithm, |R<
i (t)| ≤ F . To use the lemma

exists in intersection, we first had to prove that s ⊂ (Ji\Ri(t)) ∪ R<
i (t).

Applying the lemma exists in intersection then gives us a node k as a wit-
ness which lies in the intersection of the set s and Ji\Ri(t). We use this node
to apply the bound AM − ϵl in the proof of inequality 1 for l ≤ N . All other
nodes in the neighboring list of the normal node i minus extremes are shown to
be bounded by M(t).

To show that the inequality ∃t,M(t) < AM ∨ Am < m(t) holds, we need to
prove that for every l such that l ≤ N , the cardinality of the set XM decreases
or the cardinality of the set Xm decreases or both under the (F + 1, F + 1)-
robustness condition. This requires us proving the following lemma in Coq

Lemma sj_ind_var (s1 s2: nat → nat) (N:nat): (0< N) → (s1 1 + s2 1 < N) →
(∀ l:nat, (0 < l) → (l ≤ N) → (0< s1 l) → (0 < s2 l) →
(s1 l ≤ s1 l.−1) ∧ (s2 l ≤ s2 l.−1) ∧ ((s1 l < s1 l.−1) ∨ (s2 l < s2 l.−1))) →
∃ T:nat, (T ≤ N) ∧ (s1 T = 0 ∨ s2 T = 0)

We instantiate s1 and s2 with XM (tϵ + l, ϵl) and Xm(tϵ + l, ϵl) respectively. We
use the lemma sj ind var to arrive at a contradiction and complete the proof
of the sufficiency.

3.3 Proof of necessity

Lemma 3. [30] Consider a time-invariant network modeled by a digraph D =
(V, E) where each normal node updates its value according to the W–MSR algo-
rithm with parameter F. Under the F-total malicious model, if resilient asymp-
totic consensus is achieved then the network is (F+1, F+1)-robust.

14 M. Tekriwal et al.

Necessity is a secondary, but still significant lemma. It tells us that there is no
weaker condition than (F + 1, F + 1)-robustness such that the normal nodes
within the network reach asymptotic consensus. We now discuss an informal
proof of Lemma 3. Note that the original paper [30] does not provide a clean proof
of this lemma. For example, the original paper provides a sketch of the proof of
Lemma 3 by contrapositivity, but does not provide a concrete counterexample to
discharge the proof by contrapositive. The paper proof in [30] does not talk about
construction of weights or the proof that these weights are not well-behaved
under non-(r, s)-robustness. These issues were non-trivial and posed challenges
in Coq, as will be explained in this section. We also highlight challenges in the
construction of this counterexample and the proof of necessity in Coq, including
an issue of mutual recursion in Coq. The issues with missing details in the
original paper proof, which we had to develop explicitly, make the proof in this
paper an original contribution.

Proof. We proceed by proving the contrapositive of necessity, that is: if the
network is not (F +1, F +1) robust then it does not achieve resilient asymptotic
consensus. Assuming that the network is not (F +1, F +1)-robust we know that
there are non-empty sets S1, S2 ⊂ V, such that S1 ∩ S2 = ∅, |χF+1

S1
| ≠ |S1|,

|χF+1
S2

| ≠ |S2|, and |χF+1
S1

| + |χF+1
S2

| < F + 1. It follows that |χF+1
S1

| < F + 1,

and |χF+1
S2

| < F + 1. Also recall that χF+1
S1

⊆ S1, and χF+1
S2

⊆ S2. One way of
interpreting this condition is that the number of nodes within S1 and S2 that
can receive a lot of information from outside of their respective sets is less than
F+1 in total, and less than the number of nodes in each set respectively. We seek
to construct a set of adversaries, initial values, malicious functions, and weights
such that resilient asymptotic consensus is not achieved. In particular we seek to
prove that there exists two normal nodes i, j such that lim

t→∞
xi(t) ̸= lim

t→∞
xj(t).

We discuss the details of the proof in the Appendix D of the extended version [45].

Formalization in Coq: We formalize the lemma 3 in Coq as

Lemma necessity_proof:
nonempty_nontrivial_graph →
(¬ r_s_robustness (F + 1) (F + 1) →
¬ (∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R),

wts_well_behaved A mal init w →
Resilient_asymptotic_consensus A mal init w)).

Formalization of necessity proof exposed some inconsistencies in definitions
in the original paper [30]. In particular, the paper defines those three conditions
on weights, that we discussed in the Section 2.4, only for normal nodes. During
our formalization, we found this to be restrictive. Those conditions on weights
should hold for any node. The need for applying the conditions in the paper to
the weights of adversary nodes, is that in order to ensure that a node i ∈ A
is malicious, as defined in the paper, there must exist a time t such that the
quantity xi(t + 1) ̸=

∑
j∈Ji\Ri(t)

wij(t)x
i
j(t). In other words at some time the

value emitted by a given node must not equal the value it would emit if it was

Formally verified asymptotic consensus in robust networks 15

normal, but the sum is clearly undefined if the weights of an adversary node are
undefined. Therefore, we relax the condition that the set of weights described
in the paper only exists for normal nodes. Fortunately this does not create a
problem as adversary nodes can update their values according to any function
they wish, meaning that they do not have to use the described set of weights, or
any weights at all, leaving their values unconstrained by this condition.

Another thing that was not explicit in the original paper [30] was the right
placement of quantifiers. Formalizing the proof of necessity helped us identify
the right placement of quantifiers and provide an accurate formal specification
for the W–MSR algorithm. At the start of our formalization it was not evidently
clear to us whether the paper meant to imply that:

(∀ (A:D → bool) (mal:nat → D → R) (init:D → R), wts_well_behaved A mal init →
(Resilient_asymptotic_consensus A mal init ↔ r_s_robustness (F + 1) (F + 1))).

or:

(∀ (A:D → bool) (mal:nat → D → R) (init:D → R),
wts_well_behaved A mal init →

Resilient_asymptotic_consensus A mal init) ↔ r_s_robustness (F + 1) (F + 1).

In the first formula, the quantified values A, mal, init are not bound to the
definition of resilient asymptotic consensus. Therefore, in the necessity proof,
we cannot construct a counterexample by appropriate instantiation of A, mal
and init, to discharge the proof by contradiction. In the second formula, the
quantified values are bound to the definition of resilient asymptotic consensus,
which allows us to construct the counterexample by propagating the negation
through the quantified values. Essentially, the difference is between the formulae
(∀X,P (X) → Q(X)) and ((∀X. P (X)) → (∀X. Q(X))), where X represents the
tuple (A, mal, init), and the first statement is stronger. Therefore, the former,
stronger condition is not necessarily true in the necessity direction, while the
weaker later condition is.

Another difficulty we encountered was defining the weights in such a way
that wij(t) =

1
|Ji\Ri| . This is a result of Coq’s sensitivity to ill-defined recursion.

The issue arises because defining wij at time t requires knowing the value of xi

at time t, however, as we had defined xi, it takes the set of weights it uses as a
parameter, even though mathematically there is no issue since xi(t) only relies
on the values of xj(t− 1), and wij(t− 1). In order to solve this issue we defined
a function which returns a pair of functions (xi, wij). In order to ensure that
Coq could guess the parameter being recursed on we also had to add another
parameter twot which is initialized as 2 ·t, and ensure that the pair (xi(t), wij(t))
is returned when twot = 2·t, and (xt+1, wij(t)) is returned when twot = (2·t)+1.

3.4 Formal proof of the main theorem

We state the main theorem statement 1 in Coq as:

Theorem F_total_consensus:
nonempty_nontrivial_graph →

16 M. Tekriwal et al.

(0 < F+1 ≤ |D|)%N →
(∀ (A:D → bool) (mal:nat → D → R) (init:D → R) (w:nat → D ∗D → R),
wts_well_behaved A mal init w →
Resilient_asymptotic_consensus A mal init w) ↔ r_s_robustness (F + 1) (F + 1).

We close the proof of F total consensus by splitting the theorem into suffi-
ciency and necessity sub-proofs and applying the lemmas sufficiency proof

and necessity proof. The only detail worth noting is that necessity proof

relies on the decidable of r s robustness, which we need the axiom of the ex-
cluded middle to conclude.

4 Related Work

Recently there has been a growing interest in the formalization of distributed
systems and control theory, using both automated and interactive verification
approaches.

Some notable works in the area of automated verification use model checking,
temporal logic, and reachability techniques. For instance, Cimatti et al. [11] have
used model checking techniques to formally verify the implementation of a part
of safety logic for railway interlocking system. Schrer et al. [43] extended the
JavaPathFinder [24] model checker to support modeling of a real-time sched-
uler and physical system that are defined by differential equations. They ver-
ify the safety and liveness properties of a control system, and also verify the
programming errors. Besides model checking, temporal logic based techniques
have been applied to control synthesis [40], robust model predictive control [14]
and automatic verification of sequential control systems [35]. Other approaches
for verifying safety use reachability methods like flow pipe approximations [10],
zonotope approximation algorithms [19, 28, 2], and ellipsoidal calculus [4].

There has also been significant work in the formalization of control theory
using interactive theorem provers [39, 1, 38]. In the area of formalization of sta-
bility analysis for control theory, Cyril Cohen and Damien Rouhling formalized
the LaSalle’s principle in Coq [12]. Stability is important for the control of dy-
namical systems since it guarantees that trajectories of dynamical systems like
cars and airplanes, are bounded. Chan et al. [7] formalize safety properties like
Lyapunov stability and exponential stability of cyber-physical systems, in Coq.
In [39], Damien Rouhling formalized the soundness of a control function [32]
for an inverted pendulum. Some works have also emerged in the area of signal
processing for controls. Gallois-Wang et al. [17] formalized some error analysis
theorems about digital filters in Coq. Araiza-Illan et al. [3] formally verified high
level properties of control systems such stability, feedback gain, or robustness us-
ing the Why3 tool [15]. Rashid et al. [38] formalized the transform methods in
HOL-Light [22]. Transform methods are used in signal processing and controls
to switch between the time domain and the frequency domains for design and
analysis of control systems. A few works have emerged in the area of formaliza-
tion of the feedback control theory to guarantee robustness of control systems.
Jasim and Veres et al [26] proved one of the most fundamental and general

Formally verified asymptotic consensus in robust networks 17

result of nonlinear feedback system - the Small-gain theorem (SGT), formally
using Isabelle/HOL [37]. Hasan et al [23] formalized the theoretical foundations
of feedback controls in HOL Light. Another notable work in the formalization of
control systems is the formalization of safety properties of robot manipulators
by Affeldt et al. [1].

Most of the above works deal with the problem of formalizing the theoretic
foundations of control theory – stability analysis, transform methods, filtering
algorithms for signal processing, feedback control design. But, to our knowledge,
none of these works tackles the problem of consensus in a formal setting. Given
that consensus is a quantity of interest in distributed control applications, our
work on the formalization of the W–MSR algorithm, is a first step towards
formally verified distributed control systems.

5 Conclusion

In this work, we formalize a consensus algorithm [30] for distributed controls
in Coq. We formally prove the necessary and sufficient conditions for a set of
normal nodes in the network to achieve asymptotic consensus in the presence of
a fix bound of malicious nodes in the network. During the process of formaliza-
tion we discover several areas where the proof in the original paper is imprecise,
especially when defining the lemma statements of sufficiency and necessity. In
particular, the order of quantifiers on some variables was unclear, and we had to
spend time clarifying their order. We also prove a stronger version of the suffi-
ciency condition than the original theorem requires. This is done to ensure that
the conditions in both directions of the double implication holds. The definitions
and lemmas we formalize in this paper can be used for verifying consensus for
other threat models described in the original paper [30]. Overall our work is
a first of its kind to provide formal specifications of a consensus algorithm in
distributed controls. The total length of Coq proofs is about 11 thousand lines
of code. It took us 6 person months for the entire formalization.

A possible future direction of work is to verify the implementation of the
algorithm. The proof of this algorithm in the original paper [30], and our for-
malization assume that all computations are in the real field. However, an actual
implementation would need to use finite precision arithmetic. It would therefore
be interesting to study the effect of finite precision on the robustness of this al-
gorithm. It would also be interesting to formalize the algorithm for time-variant
networks in which the edge relation between the nodes can change with time.
Possible use cases for such network model are drone swarms for military and
rescue operations, in which each drone in the network could be expected to
dynamically change the flow of information from its neighbors.

Acknowledgments: This research was funded in part by NSF grant CCF-
2219997.

18 M. Tekriwal et al.

References

1. Affeldt, R., Cohen, C.: Formal foundations of 3d geometry to model robot ma-
nipulators. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs. pp. 30–42 (2017)

2. Althoff, M., Krogh, B.H.: Zonotope bundles for the efficient computation of reach-
able sets. In: 2011 50th IEEE conference on decision and control and European
control conference. pp. 6814–6821. IEEE (2011)

3. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’
properties with theorem proving. In: 2014 UKACC International Conference on
Control (CONTROL). pp. 244–249. IEEE (2014)

4. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In: International Workshop on Hybrid
Systems: Computation and Control. pp. 73–88. Springer (2000)

5. Carr, H., Jenkins, C., Moir, M., Miraldo, V.C., Silva, L.: Towards formal verifica-
tion of hotstuff-based byzantine fault tolerant consensus in agda. In: NASA Formal
Methods Symposium. pp. 616–635. Springer (2022)

6. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99,
pp. 173–186 (1999)

7. Chan, M., Ricketts, D., Lerner, S., Malecha, G.: Formal verification of stability
properties of cyber-physical systems. Proc. CoqPL (2016)

8. Charron-Bost, B., Merz, S.: Formal verification of a consensus algorithm in the
heard-of model. Int. J. Softw. Informatics 3(2-3), 273–303 (2009)

9. Charron-Bost, B., Merz, S.: Formal Verification of a Consensus Algorithm in the
Heard-Of Model. International Journal of Software and Informatics (IJSI) 3(2-3),
273–303 (2009), https://inria.hal.science/inria-00426388

10. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: International workshop on hybrid
systems: computation and control. pp. 76–90. Springer (1999)

11. Cimatti, A., Giunchiglia, F., Mongardi, G., Romano, D., Torielli, F., Traverso, P.:
Formal verification of a railway interlocking system using model checking. Formal
aspects of computing 10(4), 361–380 (1998)

12. Cohen, C., Rouhling, D.: A formal proof in coq of lasalle’s invariance principle. In:
International Conference on Interactive Theorem Proving. pp. 148–163. Springer
(2017)

13. Doczkal, C., Pous, D.: Graph theory in coq: Minors, treewidth, and isomorphisms.
Journal of Automated Reasoning 64(5), 795–825 (2020)

14. Farahani, S.S., Raman, V., Murray, R.M.: Robust model predictive control for
signal temporal logic synthesis. IFAC-PapersOnLine 48(27), 323–328 (2015)

15. Filliâtre, J.C., Paskevich, A.: Why3—where programs meet provers. In: European
symposium on programming. pp. 125–128. Springer (2013)

16. Függer, M., Nowak, T., Schwarz, M.: Tight bounds for asymptotic and approximate
consensus. Journal of the ACM (JACM) 68(6), 1–35 (2021)

17. Gallois-Wong, D., Boldo, S., Hilaire, T.: A coq formalization of digital filters. In: In-
ternational Conference on Intelligent Computer Mathematics. pp. 87–103. Springer
(2018)

18. Gao, S., Zhan, B., Liu, D., Sun, X., Zhi, Y., Jansen, D.N., Zhang, L.: Formal
verification of consensus in the taurus distributed database. In: Formal Methods:
24th International Symposium, FM 2021, Virtual Event, November 20–26, 2021,
Proceedings 24. pp. 741–751. Springer (2021)

Formally verified asymptotic consensus in robust networks 19

19. Girard, A., Guernic, C.L.: Zonotope/hyperplane intersection for hybrid systems
reachability analysis. In: International Workshop on Hybrid Systems: Computation
and Control. pp. 215–228. Springer (2008)

20. Goel, A., Sakallah, K.: On symmetry and quantification: A new approach to ver-
ify distributed protocols. In: NASA Formal Methods Symposium. pp. 131–150.
Springer (2021)

21. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: It’s a small (enough) world after all. In: 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21). pp. 115–131 (2021)

22. Harrison, J.: Hol light: A tutorial introduction. In: International Conference on
Formal Methods in Computer-Aided Design. pp. 265–269. Springer (1996)

23. Hasan, O., Ahmad, M.: Formal analysis of steady state errors in feedback control
systems using hol-light. In: 2013 Design, Automation & Test in Europe Conference
& Exhibition (DATE). pp. 1423–1426. IEEE (2013)

24. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
International Journal on Software Tools for Technology Transfer 2(4), 366–381
(2000)

25. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles. pp. 1–17 (2015)

26. Jasim, O.A., Veres, S.M.: Towards formal proofs of feedback control theory. In:
2017 21st International Conference on System Theory, Control and Computing
(ICSTCC). pp. 43–48. IEEE (2017)

27. Kieckhafer, R.M., Azadmanesh, M.H.: Reaching approximate agreement with
mixed-mode faults. IEEE Transactions on Parallel and Distributed Systems 5(1),
53–63 (1994)

28. Kochdumper, N., Althoff, M.: Sparse polynomial zonotopes: A novel set represen-
tation for reachability analysis. IEEE Transactions on Automatic Control 66(9),
4043–4058 (2020)

29. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
30. LeBlanc, H.J., Zhang, H., Koutsoukos, X., Sundaram, S.: Resilient asymptotic

consensus in robust networks. IEEE Journal on Selected Areas in Communications
31(4), 766–781 (2013)

31. Losa, G., Dodds, M.: On the formal verification of the stellar consensus proto-
col. In: 2nd Workshop on Formal Methods for Blockchains (FMBC 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

32. Lozano, R., Fantoni, I., Block, D.J.: Stabilization of the inverted pendulum around
its homoclinic orbit. Systems & control letters 40(3), 197–204 (2000)

33. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: in-
cremental inference of inductive invariants for verification of distributed protocols.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles.
pp. 370–384 (2019)

34. Mesbahi, M., Egerstedt, M.: Graph theoretic methods in multiagent networks.
Princeton University Press (2010)

35. Moon, I., Powers, G.J., Burch, J.R., Clarke, E.M.: Automatic verification of se-
quential control systems using temporal logic. AIChE Journal 38(1), 67–75 (1992)

36. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). pp. 305–
319 (2014)

37. Paulson, L.C.: Isabelle: A generic theorem prover. Springer (1994)

20 M. Tekriwal et al.

38. Rashid, A., Hasan, O.: Formalization of transform methods using hol light. In:
International Conference on Intelligent Computer Mathematics. pp. 319–332.
Springer (2017)

39. Rouhling, D.: A formal proof in coq of a control function for the inverted pendulum.
In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs. pp. 28–41 (2018)

40. Sadraddini, S., Belta, C.: Robust temporal logic model predictive control. In: 2015
53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton). pp. 772–779. IEEE (2015)

41. Saldana, D., Prorok, A., Sundaram, S., Campos, M.F., Kumar, V.: Resilient con-
sensus for time-varying networks of dynamic agents. In: 2017 American control
conference (ACC). pp. 252–258. IEEE (2017)

42. Saulnier, K., Saldana, D., Prorok, A., Pappas, G.J., Kumar, V.: Resilient flocking
for mobile robot teams. IEEE Robotics and Automation letters 2(2), 1039–1046
(2017)

43. Scherer, S., Lerda, F., Clarke, E.M.: Model checking of robotic control systems
(2005)

44. Schneider, F.B.: Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Comput. Surv. 22(4), 299–319 (dec 1990).
https://doi.org/10.1145/98163.98167, https://doi.org/10.1145/98163.98167

45. Tekriwal, M., Tachna-Fram, A., Jeannin, J.B., Kapritsos, M., Panagou, D.: For-
mally verified asymptotic consensus in robust networks (extended version). arXiv
preprint arXiv:2202.13833 (2022)

46. Usevitch, J., Garg, K., Panagou, D.: Finite-time resilient formation control with
bounded inputs. In: 2018 IEEE Conference on Decision and Control (CDC). pp.
2567–2574. IEEE (2018). https://doi.org/10.1109/CDC.2018.8619697

47. Van Renesse, R., Altinbuken, D.: Paxos made moderately complex. ACM Com-
puting Surveys (CSUR) 47(3), 1–36 (2015)

48. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., An-
derson, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 357–368 (2015)

49. Yao, J., Tao, R., Gu, R., Nieh, J., Jana, S., Ryan, G.: DistAI: Data-driven auto-
mated invariant learning for distributed protocols. In: 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21). pp. 405–421 (2021)

50. Zhang, H., Sundaram, S.: Robustness of information diffusion algorithms to locally
bounded adversaries. In: 2012 American Control Conference (ACC). pp. 5855–
5861. IEEE (2012)

