
Towards Verified Linear Algebra Programs Through Equivalence∗

Yihan Yang
yangyihan121@gmail.com
Harvey Mudd College

Mohit Tekriwal
tekriwal1@llnl.gov

Lawrence Livermore National Laboratory

John Sarracino
sarracino2@llnl.gov

Lawrence Livermore National Laboratory

Matthew Sottile
sottile2@llnl.gov

Lawrence Livermore National Laboratory

Ignacio Laguna
lagunaperalt1@llnl.gov

Lawrence Livermore National Laboratory

1 Introduction
Correctness in scientific computing (SC) is gaining increasing at-
tention as evident from a recently published report by the US De-
partment of Energy (DOE) workshop on correctness [6]. The SC
software stack is moving towards a new programming paradigm
dominated by approximate computing principles, which involves
the use of custom floating-point precision and data compression
formats, and is adapting to new heterogeneous hardware archi-
tecture to aid performance of scientific simulation. As existing
algorithms are being redesigned to support these new program-
ming paradigms, implementation and approximation errors creep
into almost all stages of SC software design, whose end-to-end
correctness is classified into five key abstraction layers [6]. One
correctness abstraction layer is the implementation of numerical
algorithms, which we target in this work.

There are two main challenges in verifying correctness of nu-
merical algorithms: (a) Lack of a comprehensive mechanized theory
of common building blocks like matrix factorization, orthogonal-
ization, interpolation, etc. In the past, there have only been a few
works in this area, which includes formalization of Cholesky de-
composition [9], Jordan canonical forms [4], and convergence of
stationary iterative algorithms [10, 11]; and (b) Lack of equivalence
proofs between different variants of an algorithm. Numerical algo-
rithms for linear algebra, widely used in solving partial differential
equations, generally have variants, which are developed to have fa-
vorable numerical properties, such as better numerical stability or a
faster rate of convergence. For instance, in the case of a fundamental
orthogonalization algorithm – the Gram-Schmidt process [3], two
common variants are the Classical Gram-Schmidt (CGS) and the
Modified Gram-Schmidt (MGS) processes. A key mathematical in-
variant for these variants is that each orthogonal vector is computed
by subtracting the original vector with a projection of this original
vector onto other input vectors. However, these variants vary in the
order in which these projections are subtracted in finite precision,
which leads to MGS being more stable numerically than CGS. There
are several other variants of both CGS and MGS like their block
counterparts and their implementation with reorthogonalization.
As the SC moves towards approximate computing principles and
heterogeneous hardware, leading to reimplementation of classical
numerical algorithms in form of new variants, the research ques-
tion we address in this work is “how do we verify that these variants
are mathematically correct with respect to their classical counter-
parts?". This is important because the classical counterparts have
been studied extensively in the numerical literature and act as a
ground truth against which the new variants can be evaluated. For

∗This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

the cases where the variation in implementation is due to precision,
mathematical correctness boils down to exact equivalence in reals.

Contributions. In this work, we present preliminary work, in
Coq, on proving an exact equivalence between different variants of
a classical numerical algorithm in reals. We demonstrate a proof
structure for proving exact real equivalence between MGS and CGS.
In the process of developing this proof structure, we also mechanize
several properties of orthogonalization algorithms, which address
the challenge (a), discussed earlier. To mechanize GS in Coq, we
developed a detailed pen-and-paper correctness proof of CGS, an
extension of the proof to MGS, and a mechanization of the pen-
and-paper proofs. We are in the process of mechanizing both of
these proofs and detail our formal library, mechanization progress,
and future applications in the sequel.

2 Mechanizing and Verifying Gram-Schmidt
The Gram-Schmidt process [3] (GS) is a fundamental method which
computes an orthogonal basis from a given set of linearly indepen-
dent vectors, and is defined as follows. Given a set of 𝑛 linearly
independent vectors 𝑥1, 𝑥2, . . . , 𝑥𝑛 , both CGS and MGS compute an
orthogonal set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 :

𝑣 𝑗 := 𝑥 𝑗 −
𝑗−1∑︁
𝑘=1

(𝑞𝑇
𝑘
𝑥 𝑗)𝑞𝑘 ; 𝑞𝑘 = 𝑣𝑘/| |𝑣𝑘 | |2; 𝑗 = 1 : 𝑛 [CGS]

𝑣
𝑗+1
𝑘

:= 𝑣
𝑗

𝑘
− (𝑞𝑇𝑗 𝑣

𝑗

𝑘
)𝑞 𝑗 ; 𝑞 𝑗 = 𝑣 𝑗/| |𝑣 𝑗 | |2; 𝑘 = 𝑗 + 1 : 𝑛; 𝑗 = 1 : 𝑛; [MGS]

𝑣1
𝑘
= 𝑥𝑘 ; 𝑣𝑘 := 𝑣𝑘

𝑘

The difference between CGS and MGS is that CGS orthogonalizes
each output vector against previous results in a single large com-
putation. By contrast, MGS takes the set of output vectors and
gradually orthogonalizes all of the outputs simultaneously. When
computed over Real numbers, these processes have identical results.
When computed over floating-point numbers, the MGS computa-
tion has significantly better numerical stability due to less accu-
mulation of rounding error. This is because the orthogonalization
in CGS explicitly depends on prior inputs and their accumulated
error, which generates more error, compounding on each iteration.
2.1 Gram-Schmidt Mechanization in Coq
We used the Mathematical Components library [7] in Coq to de-
velop implementations for MGS, CGS, and the equivalence state-
ment between the two. While there exists similar formalization of
GS algorithm in Isabelle/HOL [2] and LEAN [1], these formalisms
either target only CGS (in Isabelle/HOL) or use a non-computable
definition of CGS (in LEAN). Thus, the novelty of our work lies in
the fact that we also attempt to prove the numerically stable variant
of GS, i.e., MGS, with the goal of proving interesting numerical
properties like stability and convergence. Moreover, beyond just
the formalization, we aim to tackle a broader problem of proving

Yang et al.

Gr eat er _zer o_sum

nonzer o_vec

zer o_sum

vec_dot _zer o

pr oj s_or t ho

pr oj _cr eat es_or t ho

r eal _ar r ange1 r eal _ar r ange2

sum_equi v1 sum_equi v2

vec_dot _di st r i b_sub

vec_dot _di st r i b_add

pr oj ect i on_di st r i b

vec_dot _di st r i bs_sum

vec_dot _commut e

or t ho_commut eor t ho_pr oj

or t ho_vec_dot vec_dot _scal e_commut e

MGS

CGS

MGS
hel per

Figure 1. GS operation library. All lemmas are mechanized and proved.

free_seq_to_tuple

vk_notin_span

ortho_lin_ind

temp1

temp2

temp3

freeE1

free_rcons

nonzero_result_vec_helper

destruct_leq

vec_space_not_eq

vec_not_eq

vk_in_span

free_subspan
basis theorem

lin_ind_basis init_result_vec_same_length CGS_uk

vec_dot_distribs_sum

vec_dot_scale_commute

nonzero_vec

...

nonzero_result_vec

Gram-schmidt

Figure 2. CGS correctness proof. All lemmas are proved except for CGS_uk.

equivalence (both in reals and in floats) between different variants
of linear algebra algorithms. This work is therefore a building block
to achieve this broader objective.

A key challenge for this task is the lack of a comprehensive
formal theory on common linear algebra operations. We extended
MathComp to common linear algebra concepts, illustrated in the
dependency graphs Fig. 1 and Fig. 2. Each node of the graph is a
lemma, and two lemmas A and B are connected by an arrow if A
depends on B. Our library is aimed to be extensible to floating-point
proofs, which would equip each linear algebra operation with an
associated error bound, which needs to be propagated to obtain the
final bound on the loss of orthogonality.

2.2 Key Results
The main Gram-Schmidt theorem [8] (classical version) that we
formalize in Coq is stated as follows.

Lemma 2.1 (nonzero_result_vec). Let 𝑣0, 𝑣1, ..., 𝑣𝑚−1 ∈ R𝑛 be
the input linearly independent vectors of GS. Let 𝑢0, .., 𝑢𝑚−1 be the
result of GS where𝑢𝑘 = 𝑣𝑘−

∑𝑘−1
𝑖=0 proj𝑢𝑖 𝑣𝑘 . Then the number of result

vectors is same as the number of initial vectors, and for all 𝑘 ≤ 𝑚,
{𝑢0, ..𝑢𝑘−1} are all nonzero and pairwise orthogonal. Furthermore,
𝑠𝑝𝑎𝑛(𝑣0, .., 𝑣𝑘−1) = 𝑠𝑝𝑎𝑛(𝑢0, ..., 𝑢𝑘−1).

We mechanize the Gram-Schmidt theorem into an equivalent
Coq lemma over sequences and vectors, using our linear algebra
library and MathComp:
Lemma nonzero_result_vec_helper {n:nat} (init_vec : seq (r_vector

n)):

free init_vec →
forall k, (k <= (size init_vec)) →
let result_vec := classical_GS n init_vec in

(forall i, (i < k) → result_vec`_i != 0) /\

(forall i j, (i < k) → (j < k) → i != j →
ortho n result_vec`_i result_vec`_j) /\

(span (take k result_vec) = span (take k init_vec)).

The dependencies for the proof of Lemma nonzero_result_vec
are illustrated in Fig. 2. We do not discuss them here for the sake
of brevity. The second important lemma that we prove in Coq is
the Orthogonal decomposition theorem [8].

Lemma 2.2 (projs_ortho). Let 𝑎, 𝑣0, 𝑣1, ..., 𝑣𝑚−1 be vectors in R𝑛 .
For any natural number𝑘 where𝑘 ≤ 𝑚, if 𝑣0, .., 𝑣𝑘−1 are nonzero pair-
wise orthogonal, then 𝑎 −∑𝑘−1

𝑖=0 proj𝑣𝑖𝑎 is orthogonal to 𝑣0, ..., 𝑣𝑘−1.

This is a property of the vectors independent from CGS and MGS.
More importantly, both the proof of CGS and MGS uses this lemma.

2.3 Equivalency Proof Sketch
We want to show that for the set of linearly independent initial
vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 , the resulting set of orthogonal vectors from
CGS, 𝑢1, 𝑢2, . . . , 𝑢𝑛 are exactly equivalent to 𝑣11, 𝑣

2
2, . . . , 𝑣

𝑛
𝑛 in reals.

From the definition of CGS and MGS respectively, we have:

𝑢𝑖 = 𝑣𝑖 −
𝑖−1∑︁
𝑘=1

proj𝑢𝑘 𝑣𝑖 ; 𝑣𝑖𝑖 = 𝑣𝑖 −
𝑖−1∑︁
𝑘=1

proj
𝑣𝑘
𝑘

𝑣𝑘𝑖

The equivalence proof then proceeds by induction on 𝑖 with the
base case: 𝑢1 = 𝑣11 . To prove this equivalence, we need to prove the
properties of CGS and MGS independently. We have mechanized
the proof of CGS, stated in the Lemma 2.1. We are still in the process
of mechanizing the theorem for MGS. This theorem has mostly the
same structure as the CGS proof and so can reuse the CGS helper
lemmas. An additional lemma, which is proved on pen-and-paper
but unmechanized, is the following: For all 0 ≤ 𝑘 < 𝑚, if 𝑣𝑖

𝑖
⊥ 𝑣

𝑗
𝑗
for

𝑖, 𝑗 = 0, ...𝑘 − 1, then 𝑣ℎ
𝑘
= 𝑣𝑘 −

∑ℎ−1
𝑖=0 proj𝑣𝑖

𝑖
𝑣𝑖
𝑘
. for 0 ≤ ℎ ≤ 𝑘 . Notice

that when ℎ = 𝑘 , this is very close to what we want to prove in the
main theorem. With additional steps on the proof of orthogonality
using projs_ortho, we can prove the correctness of MGS. Once we
havemechanized the proof of MGS, we can compose the correctness
statements of CGS and MGS to prove the exact equivalence.

3 Future Work
One of the immediate goals on closing the proof is to coordinate
with the Mathematical Components team to add our proofs to the li-
brary so that it can be used for future developments related to linear
algebra proofs. Aside from narrowing the Trusted Computing Base
(TCB) and closing our proofs, we see three broad avenues for fu-
ture work: (a) Reasoning about floating-point programs: This
extension would require first adapting the equality constraints of
our lemmas to symbolic bounds, and then constructing new proofs
using the adapted lemmas. (b) Reasoning about low-level High
Performance Computing (HPC) programs: Another direction
is to extend our equivalence results to more fine-grained models of
program behavior. This can be done by extending a separation logic
(such as Iris, VST, or CFML) with support for floating-point primi-
tives and operations. (c) Modular equivalence framework for
floating-point programs: One final direction is to extend recent
mechanized relational equivalence frameworks such as LGTM [5]
with support for floats and proof rules for common linear-algebra re-
lational patterns, as well as higher-order parameterization to enable
modular reasoning. This would significantly automate the currently
very tedious and error-prone method of manually constructing FP
error bounds.

Towards Verified Linear Algebra Programs Through Equivalence

References
[1] [n. d.]. analysis.inner_product_space.gram_schmidt_ortho - mathlib3 docs

— leanprover-community.github.io. https://leanprover-community.github.io/
mathlib_docs/analysis/inner_product_space/gram_schmidt_ortho.html.

[2] Jesús Aransay and Jose Divasón. 2017. A formalisation inHOL of the fundamental
theorem of linear algebra and its application to the solution of the least squares
problem. Journal of Automated Reasoning 58, 4 (2017), 509–535.

[3] Åke Björck. 1994. Numerics of gram-schmidt orthogonalization. Linear Algebra
and Its Applications 197 (1994), 297–316.

[4] Guillaume Cano. 2014. Interaction entre algèbre linéaire et analyse en formalisation
des mathématiques. Theses. Université Nice Sophia Antipolis. https://theses.hal.
science/tel-00986283

[5] Vladimir Gladshtein, Qiyuan Zhao, Willow Ahrens, Saman Amarasinghe, and
Ilya Sergey. 2024. Mechanised Hypersafety Proofs about Structured Data. Proc.
ACM Program. Lang. 8, PLDI, Article 173 (June 2024), 24 pages. https://doi.org/
10.1145/3656403

[6] Maya Gokhale, Ganesh Gopalakrishnan, Jackson Mayo, Santosh Nagarakatte,
Cindy Rubio-González, and Stephen F Siegel. 2023. Report of the DOE/NSF
Workshop on Correctness in Scientific Computing, June 2023, Orlando, FL. arXiv
preprint arXiv:2312.15640 (2023).

[7] Assia Mahboubi and Enrico Tassi. 2021. Mathematical components. (2021).
[8] David Poole. 2015. Linear algebra: A modern introduction. (2015).
[9] Pierre Roux. 2016. Formal Proofs of Rounding Error Bounds: With Application

to an Automatic Positive Definiteness Check. Journal of Automated Reasoning
57 (2016), 135–156.

[10] Mohit Tekriwal, Andrew W Appel, Ariel E Kellison, David Bindel, and Jean-
Baptiste Jeannin. 2023. Verified correctness, accuracy, and convergence of a
stationary iterative linear solver: Jacobi method. In International Conference on
Intelligent Computer Mathematics. Springer, 206–221.

[11] Mohit Tekriwal, Joshua Miller, and Jean-Baptiste Jeannin. 2024. Formalization
of Asymptotic Convergence for Stationary Iterative Methods. In NASA Formal
Methods Symposium. Springer, 37–56.

https://leanprover-community.github.io/mathlib_docs/analysis/inner_product_space/gram_schmidt_ortho.html
https://leanprover-community.github.io/mathlib_docs/analysis/inner_product_space/gram_schmidt_ortho.html
https://theses.hal.science/tel-00986283
https://theses.hal.science/tel-00986283
https://doi.org/10.1145/3656403
https://doi.org/10.1145/3656403

	1 Introduction
	2 Mechanizing and Verifying Gram-Schmidt
	2.1 Gram-Schmidt Mechanization in Coq
	2.2 Key Results
	2.3 Equivalency Proof Sketch

	3 Future Work
	References

