Towards Verified Rounding Error Analysis for Stationary Iterative Methods

Ariel Kellison§
Department of Computer Science
Cornell University
Ithaca, NY, USA
ak2485@cornell.edu

Mohit Tekriwal§
Department of Aerospace engineering
University of Michigan
Ann Arbor, MI, USA
tmohit@umich.edu

Jean-Baptiste Jeannin
Department of Aerospace engineering
University of Michigan
Ann Arbor, MI, USA
jeannin@umich.edu

Geoffrey Hulette
Digital Foundations and Mathematics
Sandia National Laboratories
Livermore, CA, USA
ghulett@sandia.gov

Abstract—Iterative methods for solving linear systems serve as a basic building block for computational science. The computational cost of these methods can be significantly influenced by the round-off errors that accumulate as a result of their implementation in fine precision. In the extreme case, round-off errors that occur in practice can completely prevent an implementation from satisfying the accuracy and convergence behavior prescribed by its underlying algorithm. In the exascale era where cost is paramount, a thorough and rigorous analysis of the delay of convergence due to round-off should not be ignored. In this paper, we use a small model problem and the Jacobi iterative method to demonstrate how the Coq proof assistant can be used to formally specify the floating-point behavior of iterative methods, and to rigorously prove the accuracy of these methods.

Index Terms—Iterative convergence error, round-off error, iterative methods.

I. INTRODUCTION

Solving sparse linear systems is often the most time-consuming computation in large-scale scientific and engineering problems [1]. A major challenge in computational science is to therefore design methods for solving these systems that can be efficiently implemented at scale. This task is particularly challenging for iterative methods, whose convergence behavior and attainable accuracy can be hard to determine a priori. Iterative methods [2] solve a system of linear equations by constructing a sequence of solution vectors that approximate the exact solution to the linear system. A critical but often neglected consideration in the design of scalable iterative methods is a thorough analysis of the effect of rounding errors and the potential for their amplification [3]. Even when a thorough rounding error analysis does exist, developing and executing comprehensive tests at scale to check that the analysis holds for a particular implementation is time consuming and computationally intensive [1], [4]. Furthermore, it is often hard to determine if inaccurate results are due to the floating-point behavior of the implementation or other sources of program error. The design of scalable and accurate iterative methods for solving linear systems is therefore inextricably linked to other notions of program correctness.

In this paper, we introduce our work towards verifying the accuracy and correctness of stationary iterative methods and their implementations using the Coq proof assistant [5]. The Coq proof assistant is an interactive theorem proving environment that has been used to great success in the development of formal proofs of the functional correctness of programs [6], [7]. The theoretical guarantee given by a formal proof of program correctness is that the program will behave as expected on all possible inputs. This is a much stronger guarantee than what is provided by traditional software testing. For numerical programs such as stationary iterative methods, a thorough proof of functional correctness requires performing round-off error analysis – that is, analyzing the difference between the floating-point solution obtained by the program and the solution obtained by the ideal algorithm whose behavior is specified using exact arithmetic. We refer to formal proofs of round-off error obtained in an interactive theorem proving environment as verified round-off error analysis.

Our verified round-off error analysis for iterative methods is informed by the standard round-off error analysis given by Higham and co-authors [8], [9], but provides concrete error bounds in place of big-O estimates, and uses a slightly
different rounding error model that accounts for subnormal floating-point numbers.

Our work is facilitated by advancements in automatic and interactive theorem proving [10]–[13] and other recent formalizations of numerical methods [14]–[25]. Our verification approach leverages several pre-existing Coq packages and libraries for reasoning about mathematical abstractions in linear algebra and real-analysis, and for reasoning about floating-point arithmetic. Overall the work outlined in this paper makes the following contributions, which we believe are relevant to both the interactive theorem proving community and to the developers and maintainers of numerical software:

- We illustrate how two previously unconnected Coq libraries – VCFloat [26], [27] and Mathcomp [28] – can be interfaced in order to perform verified round-off error analysis of algorithms from numerical linear algebra;
- We demonstrate how to develop formal functional models of stationary iterative methods in both exact arithmetic and floating-point arithmetic in Coq;
- We show how functional models of numerical algorithms can be used to prove concrete bounds on the total round-off error for the Jacobi method [2] using a simple model problem consisting of a 3×3 linear system;
- We extend the Coq mathematical components library (Mathcomp) [28] with vector and matrix infinity norm definitions that are sufficient for round-off error analysis.

This paper is structured as follows. Our model problem is introduced in Section II. In Section III, we provide an overview of the Mathcomp and VCFloat Coq libraries that were used in our formalization. The functional models for the Jacobi iterations in floating-point and exact arithmetic are described in Section IV. Our main theorem on the accuracy of floating-point Jacobi iterations carried out in single-precision arithmetic on a simple model problem is given in Section V. We discuss some key takeaways from our work and end with future directions in Section VI. The definitions and properties of the matrix and vector infinity norms that were developed for this work are discussed in Appendix A.

Our full formalization is available at https://github.com/VeriNum/iterative_methods.

II. Problem Formulation

Stationary iterative methods are among the oldest and simplest methods for solving linear systems of the form

$$Ax = b, \quad A = M + N \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}^n. \quad (1)$$

The non-singular and usually non-Hermitian matrix A and vector b in such systems typically appear, for example, in the solution of a partial differential equation. M is chosen such that it is easily invertible. Rather than solving the system $Ax = b$ exactly, one can approximate the solution vector x using stationary iterations of the form

$$Mx_m + Nx_{m-1} = b, \quad (2)$$

where the vector x_{m-1} is an approximation to the solution vector x obtained after $m-1$ iterations, and is known at the m^{th} step. The unknown x_m is therefore given by

$$x_m = -(M^{-1}N)x_{m-1} + M^{-1}b \quad (3)$$

In this paper, we demonstrate our work towards verifying the accuracy and correctness of stationary iterative methods by considering the Jacobi method, where $M = \text{diag}(A)$, on a simple model problem. In this case the model problem is representative of solving a linear boundary value problem with a second order central difference scheme; this simple model problem serves as a sufficient “stress test” for our proposed verification method, indicating the potential challenges of using existing Coq libraries and packages on larger problems. In particular, we consider the tri-diagonal matrix system $Ax = b$ where A is a coefficient matrix of size 3×3, x is the unknown solution vectors, and b is a known data vector:

$$A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}; \quad b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. \quad (4)$$

The matrices M and N of the Jacobi method for this problem are:

$$M = \frac{1}{h^2} \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}; \quad N = \frac{1}{h^2} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}.$$

Although most of our theorems are parameterized by the discretization parameter h, we set $h = 1$ globally in our analysis for simplicity. Ultimately, we are interested in a formal proof of the accuracy of an iterative solution to the system (4) obtained in floating-point arithmetic by a particular implementation in an imperative language. Fortunately, there is a well-established road map for obtaining such a proof. In particular, the following steps for proving the accuracy and correctness of floating-point programs has been described before by Appel and Bertot [29] for a Newton’s-method square root function, and Kellison and Appel [30] for Verlet integration of the simple harmonic oscillator. For our model problem, the steps are as follows.

1) Write a C program that solves the system (4) by Jacobi iterations of the form (3).
2) Write a floating-point functional model in Coq – a recursive functional program that operates on floating-point values – that solves the system (4) by Jacobi iterations of the form (3) in the precision of the C program from Step 1.
3) Prove that the program written in Step 1 implements the floating-point functional model of Step 2 using a program logic for C.
4) Write a real functional model in Coq – a recursive functional program that operates on Coq’s axiomatic real numbers – that solves the system (4) by Jacobi iterations of the form (3) using exact arithmetic.
5) Prove a tight upper bound on the accuracy by which the floating-point functional model approximates the real functional model.
6) Prove a bound on the iterative convergence error –
the difference between the solution obtained by solving
the linear system directly and the solution obtained by
solving the linear system using an iterative method.
7) Prove a total error bound by composing the proofs of
iterative convergence error and floating-point round-off
error.

In this work, we focus on the proof of accuracy of Jacobi
iterations, which involves steps 2, 4, and 5. In the following
section, we briefly describe the tools we have used for writing
the functional models in steps 2 and 4. We describe the proof
of accuracy in Section V.

III. BACKGROUND

We define functional models as purely functional programs
written in Coq that implement the Jacobi iterates in equa-
tion (3). The real functional model is written using Math-
comp [28] and the floating-point functional model is written
using VCFloat [26, 27]. For the interactive theorem proving
community, a highlight of this work is a demonstration of the
interaction between the VCFloat and Mathcomp libraries.

We chose Coq for our development because we intend to
compose the effect of rounding error with iterative conver-
gence error formalized in Coq as described by Tekriwal and
co-authors [31]. Other interactive theorem provers like HOL
Light [32], HOL4 [33], and PVS [34] can be used to formalize
properties about floating-point rounding errors and matrices.
There have been works on formalization of floating-point error
analysis [35]–[38] and matrix theory [39], [40] in HOL. The
IEEE-754 floating-point standard has also been formalized in
PVS [41] and has been used in various applications [42]–[44].

We briefly review relevant background on Mathcomp library
and VCFloat package in the following sections.

A. The VCFloat Coq Package

VCFloat performs automated floating-point round-off error
analysis on floating-point expressions in Coq. VCFloat utilizes
the Flocq [45] formalization of IEEE-754 binary floating-point
formats, which is an inductive data-type parameterized by the
precision prec ∈ ℤ and the exponent emax ∈ ℤ. For the
round-to-nearest rounding mode, VCFloat models rounding error as

\[\text{rnd}(x) = x \times (1 + \delta) + \epsilon \]

where \(\delta \leq \text{prec} \) gives the maximum relative error for normal
numbers and \(\epsilon \leq (3 - \text{emax} - \text{prec} - 1) \) gives the maximum
absolute error for subnormal numbers.

VCFloat provides a functional modeling language over
the Flocq formalization of IEEE-754 binary floating-point
formats that enables users to write floating-point expressions –
which we refer to as shallow-embedded expressions –
using infix notation, along with tactics (algorithms) for
automatically translating these shallow-embedded expressions
into deep-embedded expressions, which are expression trees
over floating-point types. VCFloat’s core theorem effectively
operates on a deep-embedded expression \(e \) by applying the
rounding error model of equation (5) to generate a shallow-
embedded expressions \(\tilde{r} \) over the reals containing epsilons
(\(\epsilon \)) and deltas (\(\delta \)) such that \(\text{rnd}(\epsilon) = \tilde{r} \).
The soundness of VCFloat’s core theorem follows from the fact that a shallow-
embedded expression \(\tilde{r} \) is only generated if certain validity
conditions are met (e.g., that operations in \(\epsilon \) do not overflow
in the working precision – see [26, §4, Theorem 3]).

Additional VCFloat tactics used in conjunction with the
Coq interval library [46] assist users in automatically deriving
verified absolute forward error bounds; that is, on the absolute
difference between the correctly rounded shallow-embedded
expression \(\tilde{r} \) and its corresponding shallow-embedded
expression \(r \) in the absence of rounding error. In particular,
VCFloat automatically generates a constant const such that
\(|\tilde{r} - r| \leq \text{const} \) is a provable theorem in Coq.

The VCFloat predicate used in the statement of
Coq theorems bounding the absolute local round-
off error of a deep-embedded expression tree \(expr \)
over floating-point types by the real value \(\text{bdn} \) is
(prove_round-off_bound map1 map2 expr bnd), where
map2 maps identifiers for variables in the deep-embedded
expression tree to their corresponding floating-point valued
variables in the shallow-embedded floating-point expression,
and map1 maps these floating-point valued variables to
their real-valued bounds; real-valued bounds on variables are
provided by the user, and are necessary both for proving the
absence of overflow of the expression and for generating tight
error bounds. A full demonstration of VCFloat’s functionality
is provided by Appel and Kellison [27].

B. The Mathcomp Coq Library

The Mathcomp mathematical components [28] library for-
malizes theories of sequences, matrices, and vectors, and
provides an abstraction over algebraic structures like rings
and fields. Properties like transpose, conjugate, matrix space
theory, eigenspace theory are also provided. These algebraic
structures can be instantiated with Coq’s axiomatic reals,
which allows users to perform real analysis using Coq’s
standard library. The Mathcomp theories for matrices and
sequences were utilized for this work. Our formalization of
existing gaps in the theory relating to matrix and vector norms
is described in Appendix A.

Matrices in Mathcomp are formally represented by a row-
major list of their coefficients. This implementation is hidden
by wrappers so that matrices and vectors may be treated as
abstract. In particular,

- \('M[R](m, n) \) is the type of \(m \times n \) matrices with coefficients
 in \(\mathbb{R} \).
- \('M[R]_n \) is the type of \(n \times n \) square matrices.
- \('zV[R]_n \) is the type of \(1 \times n \) row vectors.
- \('cV[R]_n \) is the type of \(n \times 1 \) column vectors.
- \(\text{\textbackslash \text{matrix_}(i < m, j < n) Expr(i, j) } \) is the \(m \times n \) matrix
 with coefficients defined in \(\text{Expr}(i, j) \).
As an example, consider the definition 1 of Matrix_A which defines the 2×2 real valued matrix $A = [1, 2; 3, 4]$:

\[
\text{Definition Matrix_A : 'M_n := \{matrix_i(j < 2, j < 2) (if (i = 0\%N) then (if (j = 0\%N) then 1\%Re else 2\%Re) else (if (j = 0\%N) then 3\%Re else 4\%Re)).}
\]

The notation $(\text{val } \%\text{Re})$ is used to denote that val is a real number and the notation $(\text{val } \%\text{N})$ is used to denote that val is a natural number. Note that the $[\text{R}]$ in the above listed abstractions is typically omitted so that types are displayed as, e.g., '$\text{M}(m, n)$.

IV. FUNCTIONAL MODELS

Our functional models for Jacobi iterations are recursive functional programs in Coq that model the iterative algorithm (3). These are implemented using Coq’s Fixpoint operator, which defines a recursive function.

We define the real-valued functional model in Coq as $X_m _\text{real}$:

\[
\begin{align*}
\text{Fixpoint } X_m _\text{real} (m: \text{nat}) (x: 0; b: 'cV_n _\text{Re}) : 'cV_n _\text{Re} \Rightarrow \\
\text{match } m \text{ with} & \\
\text{| 0 } \Rightarrow x \| & \\
\text{| p+1 } \Rightarrow (S_\text{mat} m h) \times (X_m _\text{real} p x b h) \times (\text{inv} _\text{Al} m n h) \times b \\
\end{align*}
\]

The function $X_m _\text{real}$ takes as inputs: m, the iteration number; n, the matrix and vector dimension; x, the real valued initial guess column vector of size n; b, the real valued data column vector of size n; and the discretization parameter h (which is globally set to $h = 1$ for our model problem). The function $X_m _\text{real}$ returns a real valued column vector of size n represented by the type `$cV[R]_n`.

The match statement is equivalent to an if then else statement: if the iteration step is zero, $X_m _\text{real}$ returns the initial guess vector; if the iteration step is non-zero, $X_m _\text{real}$ returns the iterative solution corresponding to the formula (3). Here, S_mat is the iteration matrix, i.e., $S_\text{mat} \triangleq -M^{-1}N$, and $\text{inv} _\text{Al}$ is the inverse of the matrix M.

We define the floating-point functional model in Coq as X_m:

\[
\begin{align*}
\text{Fixpoint } X_m (m: \text{nat}) (x: 0; b: 'cV_n _\text{Re}) : 'cV_n _\text{Re} \Rightarrow \\
\text{list (ftype Tsingle) :=} & \\
\text{match } m \text{ with} & \\
\text{| 0 } \Rightarrow x \| & \\
\text{| p+1 } \Rightarrow \text{vec_add} (S_\text{mat} _\text{mul} (X_m p x b h)) \times (\text{Al} _\text{inv} _\text{mul} _b b h) \\
\end{align*}
\]

where $S_\text{mat} _\text{mul}$ denotes multiplication in single-precision between the matrix $S_\text{mat} \triangleq -M^{-1}N$ of floating-point values and the vector x_{m-1} of floating-point values, and $\text{Al} _\text{inv} _\text{mul} _b$ denotes multiplication in single-precision between the matrix M^{-1} of floating-point values and the vector b of floating-point values. The function vec_add adds elements in a list recursively. We used CompCert 47 lists to represent matrices and vectors of floating-point values; the return type of the floating-point function model X_m is therefore a list of single-precision values: list (ftype Tsingle).

This choice is governed by the ease with which we can switch between CompCert lists and Mathcomp vectors. Defining a mapping between CompCert lists over the real numbers and Mathcomp column vectors is straightforward. We map CompCert lists of floating-point values to Mathcomp column vectors using VCFloat functions that inject the floating-point numbers into the reals. We note that VCFloat is able to handle functional models with multiple precisions; our choice to use only single-precision operations and values for our model problem was arbitrary.

V. A FORMAL ACCURACY PROOF

The global iterative error defined after $k + 1$ iterations is defined as

\[
e_{k+1} = ||\tilde{x}_{k+1} - x||
\]

where x is the solution obtained by solving the linear system $Ax = b$ exactly, i.e. $x = A^{-1}b$, and \tilde{x}_{k+1} is the iterative solution after $k + 1$ steps computed in floating-point arithmetic. We can further split the global iterative error into the global round-off error and the exact iterative error:

\[
e_{k+1} = ||\tilde{x}_{k+1} - x|| \leq ||\tilde{x}_{k+1} - \tilde{x}_{k+1}|| = ||x_{k+1} - x||.
\]

The exact iterative error is the difference between the solution obtained by solving the linear system exactly and the solution obtained by solving the linear system using an iterative method in exact arithmetic. A formal proof of convergence in the presence of iterative error in exact arithmetic is given by Tekriwal and co-authors [31]. In this work, we derive a bound on the global round-off error, which is the difference between the iterative solutions obtained in exact and floating-point arithmetic. In particular, we represent the floating-point solution to iterative system in equation (2) as

\[
\tilde{x}_{k+1} = -M^{-1}N\tilde{x}_k + M^{-1}b + f_{k+1}
\]

where f_{k+1} is the local absolute round-off error from computing $(-M^{-1}N\tilde{x}_k + M^{-1}b)$ at step $k + 1$. If we denote the error between the iterative solution obtained in ideal arithmetic from the iterative solution obtained in floating-point arithmetic as e_k, then the following relation holds:

\[
e_{k+1} = ||x_{k+1} - \tilde{x}_{k+1}|| \leq ||(M^{-1}N)e_k|| + ||f_{k+1}||.\]

Our formalization in Coq of the infinity norm $|| \cdot ||_\infty$ is described in Appendix A.

If $\max(f_n)$ is the maximum local error over all k iterations, then the norm-wise error terms satisfy

\[
e_{k+1} \leq \max(f_n) \sum_{i=0}^{k} ||M^{-1}N||^i.
\]
In order to obtain a concrete maximum absolute floating-point error vector $\max_{n \leq k}(f_n)$ using VCFLOAT, we must first make an initial guess for a component-wise bound on the absolute value of the floating-point solution vector \tilde{x} at any iteration k (see Section III-A). For our model problem, we chose a loose bound of $|\tilde{x}_i| \leq 100$, where \tilde{x}_i denotes the injection of the i-th component of the floating-point solution vector at iteration k into the reals. In general, this initial guess should be determined as follows. Consider that equation (9) can be rewritten as

$$|\tilde{x}_{k+1}| \leq \max_{n \leq k}(f_n) \sum_{i=0}^{k} ||M^{-1}N||^i + |x_{k+1}|. \quad (10)$$

Estimates on the second term on the right hand side of equation (10) should follow from qualitative information about the system, and estimates on the first term on the right hand side should follow from standard results on the floating-point error for matrix-vector multiplication, as described by Higham and Knight [8, §2]. We will show in our global accuracy theorem that the floating-point error accumulated over k iterations does not cause the components of the computed solution to exceed our estimated bound.

The initial guess for a component-wise bound on the absolute value of the floating-point solution vector is encoded into a data-structure, which we denote as b_{map}, which maps the identifiers used to construct the deep-embedded expression tree for the solution vector to floating-point valued variables If $(\text{varmap } s)$ is the map data structure that maps the floating-point valued variables in the tuple s to their real-valued bounds, then the predicate (prove_round_off_bound b_{map} $(\text{varmap } s)$ expr bnd) is used to state that the absolute forward error on the component expr of the floating-point solution is less than b_{map}.

A concrete numerical value for b_{map} is derived automatically as briefly described in Section III-A while constructing the proof in Coq. If \tilde{x}^1, \tilde{x}^2, and \tilde{x}^3 are deep-embedded expression trees generated by VCFLOAT from the shallow-embedded expression for a single iteration of the floating-point functional model (i.e., for $k = 1$ in $(X_m k \hat{a} \hat{b} h)$), then the Coq theorems for the absolute component-wise local floating-point error of the solution vector \tilde{x} are then stated as follows.

Theorem prove_round_off_bound_x1_aux:
- forall s: state, prove_round_off_bound b_{map} $(\text{varmap } s)$ \tilde{x}^1 (9.04e-06).

Theorem prove_round_off_bound_x2_aux:
- forall s: state, prove_round_off_bound b_{map} $(\text{varmap } s)$ \tilde{x}^2 (1.5e-05).

Theorem prove_round_off_bound_x3_aux:
- forall s: state, prove_round_off_bound b_{map} $(\text{varmap } s)$ \tilde{x}^3 (9.01e-06).

The theorem prove_round_off_bound_x1_aux gives rounding error in first component of the solution vector \tilde{x}: prove_round_off_bound_x2_aux and prove_round_off_bound_x3_aux give rounding error in the second and third components of the solution vector \tilde{x}, respectively. The maximum local rounding error $\max_{n \leq k}(f_n)$ is the maximum of the component-wise round-off errors. In this particular case, using these theorems, we construct the vector $\max_{n \leq k}(f_n)$ of component-wise round-off errors as

$$||\max_{n \leq k}(f_n)||_\infty = ||f_{\text{max}}||_\infty = (1.5e - 05).$$

A core component of the definition of the predicate (prove_round_off_bound b_{map} $(\text{map1 expr } bnd)$) is the predicate (boundsmap_denote b_{map} $(\text{map2 expr } b_{map})$). If (boundsmap_denote b_{map} $(\text{map2 expr } b_{map}) = \text{true}$), then the floating-point valued variables in expr are bounded by the user supplied bounds used to construct $map1$.

We state the following theorems using some Coq syntax, but we omit the Coq functions that inject single-precision floating-point data structures into their real counterparts, as well as those functions that map Coq lists to Mathcomp vectors. We instead represent the result of such an injection on the floating-point data \tilde{y} as \tilde{y}. Recall that the discretization parameter is assigned globally to $h = 1$.

The theorem step_round_off_error bounds the error on the infinity norm of the shallow-embedded expressions for the functional models; the proof of the theorem follows by invoking each of the prior lemmas (e.g., prove_round_off_bound_x2_aux) for the component-wise error on the deep-embedded expressions:

Theorem step_round_off_error:
- $\forall s$: state, boundsmap_denote b_{map} $(\text{varmap } s) \rightarrow$ let $k \equiv 1$ in $||X_m \text{real}(k, \tilde{a}, \tilde{b}, h) - X_m (k, \hat{a}, \hat{b}, h)||_\infty \leq ||f_{\text{max}}||_\infty$.

Our main accuracy theorem bounds the floating-point error over $k \leq 100$ iterations:

Theorem iterative_round_off_error:
- $\forall (x_0 : \text{list } F), (k : N), (\text{boundsmap_denote } b_{map} (\text{varmap } \tilde{x}) \land ||x_0||_\infty \leq 48 \land ||\hat{b}||_\infty \leq 1 \land k \leq 100) \rightarrow$
 - let $\tilde{x}_k = X_m (k, \tilde{x}_0, \hat{b}, h)$ in
 - let $x_k = X_m \text{real} (k, \tilde{x}_0, \hat{b}, h)$ in
 - $||x_k - \tilde{x}_k||_\infty \leq ||f_{\text{max}}||_\infty \sum_{n=0}^{k} ||M^{-1}N||^n \land \text{boundsmap_denote } b_{map} (\text{varmap } \tilde{x}_k)$.

A proof of the theorem iterative_round_off_error follows by induction. The base case follows trivially: no error is introduced between the input starting vector \tilde{x}_0 and its injection \tilde{x}_0 to the reals. For the inductive step, we first prove the left conjunct,

$$||x_{k+1} - \tilde{x}_{k+1}||_\infty \leq ||f_{k+1}||_\infty \sum_{m=0}^{k+1} ||M^{-1}N||^m \infty.$$}

Decomposing $||x_{k+1} - \tilde{x}_{k+1}||_\infty$ as single iterations over the inputs x_k and \tilde{x}_k yields

$$||X_m \text{real} (1, x_k, \hat{b}, h) - X_m (1, \tilde{x}_k, \hat{b}, h)||_\infty,$$
which can further be decomposed into a local error term and an accumulation of error term:

\[\|X_{\text{m-real}}(1, x_k, \tilde{b}, h) - X_{\text{m-real}}(1, \tilde{x}_k, \tilde{b}, h)\|_\infty \leq \|x_{\text{m-real}}(1, \tilde{x}_k, \tilde{b}, h) - X_{\text{m-real}}(1, \tilde{x}_k, \tilde{b}, h)\|_\infty + \]

\[\text{global accumulation of error} \]

\[\|M^{-1}N\|_\infty \|x_k - \tilde{x}_k\|_\infty + \]

\[\text{local round-off error} \]

\[\|X_{\text{m-real}}(1, \tilde{x}_k, \tilde{b}, h) - X_{\text{m-real}}(1, \tilde{x}_k, \tilde{b}, h)\|_\infty. \]

The desired conclusion

\[\|x_{k+1} - \tilde{x}_{k+1}\|_\infty \leq \|f_k\|_\infty \sum_{m=0}^{k+1} \|M^{-1}N\|_\infty^m + \|x_{k+1}\|_\infty. \]

(11)

then follows in two steps. To bound the global accumulation of error term we only need to invoke the inductive hypothesis which bounds \|x_k - \tilde{x}_k\|_\infty. To bound the local round-off error term, we must have evidence that each component of the floating-point solution vector \(\tilde{x}_k\) has not exceeded the user specified bounds encoded in \(bmap\); observe that this follows from the inductive hypothesis which includes the predicate \(\text{boundsmap_denote bmap (varmap x)}\). This predicate is used to satisfy the premise of the theorem \(\text{step_round_off_error}\), which is invoked to bound the local round-off error term and concludes the proof of the left conjunct of the conclusion.

Finally, the right conjunct of the conclusion \(\text{boundsmap_denote bmap (varmap x)}\), follows by proving that each component \(i\) of the floating-point solution vector at step \(k+1\) is bounded by the user supplied bounds: \(|\tilde{x}_k| \leq 100\). To do this, we decompose the error bound at step \(k+1\):

\[\|\tilde{x}_{k+1}\|_\infty \leq \|f_k\|_\infty \sum_{m=0}^{k+1} \|M^{-1}N\|_\infty^m + \|x_{k+1}\|_\infty. \]

We obtain a bound on the exact arithmetic solution vector \(\|x_{\text{m-real}}(1, x_k, 0, b, h)\|_\infty\) that satisfies \(\|x_{\text{m-real}}(1, x_k, 0, b, h)\|_\infty \leq 100\) under the conditions \(\|x_0\|_\infty \leq 48\), \(\|b\|_\infty \leq 1\), and \(k \leq 100\):

Lemma sol_up_bound_exists:

\[\forall (x_0 : b : \text{lists } \mathbb{R}) (k : \mathbb{N}) \]

\[(\|x_0\|_\infty \leq 48 \land \|b\|_\infty \leq 1 \land k \leq 100) \rightarrow \]

\[\|X_{\text{m-real}}(k+1, x_0, b, h)\|_\infty \leq 99. \]

Invoking this lemma concludes the proof.

Note that from the definition of iterative system (3), we arrive at the following bound for the real solution vector \(x_{k+1}\):

\[\|x_{k+1}\|_\infty \leq \|(M^{-1}N)^{k+1}\|\|x_0\|_\infty + \]

\[\|M^{-1}\|_\infty \|b\|_\infty \sum_{j=0}^{m} \|M^{-1}N\|_\infty^j \]

For our model problem, we proved that the norm of the iteration matrix is exactly 1, i.e., \(\|M^{-1}N\|_\infty = 1\). Therefore, the geometric sum of the norm of the iteration matrix depends on the iteration count, i.e., \(\sum_{j=0}^{m} \|M^{-1}N\|_\infty^j = k + 1\). We also proved that \(\|M^{-1}\|_\infty \leq \frac{1}{2}\). Hence,

\[\|x_{k+1}\|_\infty \leq \|x_0\|_\infty + \frac{1}{2}\|b\|_\infty (k + 1) \]

Thus, to prove that \(\|x_{k+1}\|_\infty \leq 99\), we need to invoke the preconditions, \(\|x_0\|_\infty \leq 48\), \(k \leq 100\), and \(\|b\|_\infty \leq 1\).

VI. Conclusion and future work

We argue that tools that connect guarantees of program correctness to guarantees of floating-point accuracy can assist in the design of scalable, accurate, and correct iterative methods for solving linear systems by providing a priori guarantees on worst case convergence behavior and attainable accuracy. In this work, we demonstrated how the Coq proof assistant and its associated packages and libraries can be used guarantee the floating-point accuracy of a small model problem whose solution was found using Jacobi iterates. As future work, we have two goals.

First, we plan to generalize this analysis to a generic \(n \times n\) matrix and a generic iteration algorithm, i.e., parametric in \(A\), \(M\), and \(N\). This requires formalizing standard results on the floating-point error for matrix-vector multiplication, as described by Higham and Knight [8, §2].

Second, we plan to connect our accuracy proof to proofs of program correctness and iterative convergence error, as described in steps 1-7 of the verification outline given in Section II. Previous work [31] has formalized sufficient and necessary conditions for asymptotic convergence of the iterative solution obtained in exact arithmetic to the solution obtained by solving \(Ax = b\) directly. Combining these works would provide a proof of accuracy that soundly composes the effects of rounding errors with the effects of iterative errors into a proof of a *total error* bound. We plan to connect our total error bound to a proof of program correctness in order to guarantee that a binary compiled from a C implementation of an iterative method will always exhibit error within the proven bounds. We intend to carry out the proof of program correctness using the Verified Software Toolchain (VST) [48], which is proven sound with respect to the formal operational semantics of CompCert C [47].

APPENDIX

A. Matrix and vector infinity norm formalization

A by-product of this work is the formalization of infinity norms of matrix and vectors. This is missing in the current formalization of linear algebra in Mathcomp. We describe here our formalization of the properties of infinity norms.

The `seq` library in Mathcomp allows us to define finite sequences. In our formalization, we use sequences to reason about matrix and vector infinity norms. We therefore introduce here some relevant operations from the sequence library. The
following notation \(\text{seq } E \mid x \leftarrow s \) := map (fun x ⇒ E) s defines a map for each element \(x \) in the sequence \(s \). To extract an \(n^{th} \) element in the sequence, we use the notation \(n \times 0 \times s \).

Mathcomp allows us to define iterated sums and products by instantiating the op operator and the appropriate identity idx:

Notation "\[\big \{ \text{op} \mid \text{idx} \}_{\text{r \ P}} \]" := (bigop idx r (fun i ⇒ BigBody i op P %#F)) : big_scope.

Here, \(F \) is a function of \(i \) chosen from a finite sequence \(r \) when the predicate \(P \) holds true.

We define the vector infinity norm \(\| v \|_\infty = \max_i |v_i| \) and the matrix infinity norm

\[
\| A \|_\infty = \max_{j=1}^{n} \sum_{i=1}^{n} |A_{ij}|
\]

in Coq as

Definition vec_inf_norm {n:nat} (v : 'cV_n) :=
bigmaxr 0%Re [seq (Rabs (v i 0)) | i ← enum 'I_n],

and

Definition matrix_inf_norm {n:nat} (A : 'M[R]_n) :=
bigmaxr 0%Re [seq (row_sum A i) | i ← enum 'I_n].

The Mathcomp abstraction \(\text{bigmaxr} \) is used here to define the maximum of elements in a sequence. The definition \(\text{vec_inf_norm} \) takes a real column vector of size \(n \) denoted by \('cV[R]_n \) and returns a maximum of the sequence of absolute values of each of its components, denoted by \(\text{Rabs} \) \((v \ i 0) \), where \(i \) is taken list of ordinal numbers \(\{0 \ldots (n-1)\} \). Similarly, the definition \(\text{matrix_inf_norm} \) takes a real values square matrix \(A \) denoted by \('M[R]_n \) and returns a maximum of the sequence of the row sum of the components of \(A \). We define the row sum as \(\text{row_sum} \),

Definition row_sum {n:nat} (A : 'M[R]_n) (i : 'I_n) :=
\big[\{0\mid\%,/0\}_{(j<n)}\] Rabs (A i j),

which takes a square matrix \(A \) and an index \(i \) and returns a sum of the absolute values of the components of \(A \) in row \(i \). In this case, the big operator returns an iterated sum of finite components in the row \(i \).

Table I and Table II illustrate the properties of the vector infinity norm and matrix infinity norm that we formalized in Coq.

REFERENCES

<table>
<thead>
<tr>
<th>Properties</th>
<th>Coq formalization</th>
</tr>
</thead>
</table>
| \[|0|_\infty = 0\] | Lemma vec_inf_norm_0_is_0 {n:nat}:
@vec_inf_norm n+1 0 = 0%Re. |
| \[||a + b||_\infty \leq ||a||_\infty + ||b||_\infty\] | Lemma triang_ineq {n:nat}:
forall a b: 'cV_n+1,
vec_inf_norm a + vec_inf_norm b ≤ vec_inf_norm n. |
| \[0 \leq ||v||_\infty\] | Lemma vec_norm_pd {n:nat}:
forall v: 'cV_n,
0 ≤ vec_inf_norm v. |
| \[||\neg v||_\infty = ||v||_\infty\] | Lemma vec_inf_norm_opp {n:nat}:
forall v: 'cV_n,
vec_inf_norm v = vec_inf_norm (\neg v). |

<table>
<thead>
<tr>
<th>Properties</th>
<th>Coq formalization</th>
</tr>
</thead>
</table>
| \[\|A\|_\infty \leq \|A\|_\infty \|v\|_\infty\] | Lemma submult_prop {n:nat}:
\((A : 'M[R]_n) \|v : 'cV[R]_n+1\):
vec_inf_norm A × v ≤ matrix_inf_norm A × vec_inf_norm v. |
| \[0 \leq \|A\|_1\] | Lemma matrix_norm_pd {n:nat}:
\(A : 'M[R]_n+1\):
0 ≤ matrix_inf_norm A. |
| \[\|AB\|_\infty \leq \|A\|_\infty \|B\|_\infty\] | Lemma matrix_norm_le {n:nat}:
\forall (A B : 'M[R]_n+1),
matrix_inf_norm A × B ≤ matrix_inf_norm A × matrix_inf_norm B. |
| \[\|A + B\|_\infty \leq \|A\|_\infty + \|B\|_\infty\] | Lemma matrix_norm_add {n:nat}:
\forall (A B : 'M[R]_n+1),
matrix_inf_norm A + matrix_inf_norm B ≤ matrix_inf_norm A + matrix_inf_norm B. |
| \[\|1\|_\infty = 1\] | Lemma matrix_inf_norm_1 {n:nat}:
@matrix_inf_norm n+1 1 = 1%Re. |

