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Grid sensitivity and role of error in computing a lid-driven cavity problem
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The investigation on grid sensitivity for the bifurcation problem of the canonical lid-driven cavity (LDC) flow
results is reported here with very fine grids. This is motivated by different researchers presenting different first
bifurcation critical Reynolds number (Recr1), which appears to depend on the formulation, numerical method, and
choice of grid. By using a very-high-accuracy parallel algorithm, and the same method with which sequential
results were presented by Lestandi et al. [Comput. Fluids 166, 86 (2018)] [for (257 × 257) and (513 × 513)
uniformly spaced grid], we present results using (1025×1025) and (2049×2049) grid points. Detailed results
presented using these grids help us understand the computational physics of the numerical receptivity of the
LDC flow, with and without explicit excitation. The mathematical physics of the investigated problem will
become apparent when we identify the roles of numerical errors with the ambient omnipresent disturbances
in real physical flows as interchangeable. In physical or in numerical setups, presence of disturbances cannot
be ignored. In this context, the need for explicit excitation for the used compact scheme arises for a definitive
threshold amplitude, below which the flow relaxes back to quiescent state after the excitation is removed in
computations. We also implement the present parallel method to show the physical aspects of primary and
secondary instabilities to be maintained for other numerical schemes, and we show the results to reflect the
complex physics during multiple subcritical Hopf bifurcation. Also, we relate the various sources of errors during
computations that is typical of such shear-driven flow. These results, with near spectral accuracy, constitute
universal benchmark results for the solution of Navier-Stokes equation for LDC.
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I. INTRODUCTION

Traditionally fluid dynamical systems undergoing bifur-
cation or instability are classified as either amplifiers or os-
cillators. This classification is important as it represents two
classes of canonical problems, namely: (i) The zero pressure
gradient boundary layer (which requires explicit excitation
to display flow instability and hence called an amplifier of
disturbance) and (ii) vortex dominated flows (external flow
past a cylinder and flow inside a LDC which do not re-
quire any excitation for moderate grids using nondissipative
methods). The instability for amplifier is usually governed
by linearized Navier-Stokes equation [1,2] and the instability
and transition display spatiotemporal variations [3,4]. For the
oscillators, it is assumed that the characteristic frequency
is independent of background disturbances, and is fixed by
a resonance mechanism, for it to be called as oscillator or
resonator [5]. The present study focuses on the problem of
two-dimensional (2D) LDC, acting as an oscillator. Here, we
explore the computational physics aspects of Hopf bifurcation
sequences and subsequent nonlinear dynamics of LDC using
refined grids, which have not been used before.

The 2D flow in a square LDC (of side L) is used not
only to develop newer methods for computing incompress-
ible Navier-Stokes equation (NSE) due to its unambiguous
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boundary conditions and simple geometry, but also to help us
understand nonlinear dynamics of vortex-dominated unsteady
flows. When the lid is given a constant translational speed
(U ), then for high Re (=UL/ν, with ν as the kinematic
viscosity), the flow becomes unsteady inside the cavity due
to various disturbance sources present in the computation.
A schematic of the problem is shown in Fig. 1, with two
specific points marked, where the flow is explicitly excited
(top left) and unsteady output sampled (top right). In high-
accuracy computing, when the usual sources of errors due to
discretization are minimized, unsteadiness still arises in LDC
flow due to other sources of errors, which include aliasing
error, Gibbs’ phenomenon, etc., of which Gibbs’ phenomenon
is physical. This has been identified at the corners of the
top lid in the pseudospectral computations of NSE [6,7].
However, as we are going to show that for inadequately
resolved grid, aliasing error is distributed at all the points of
the top lid. Computing LDC flow by other discrete computing
methods [8–10] display unsteadiness at varying Re values.
One can compute steady flow at low Re by various methods.
At higher Re, the flow experiences bifurcation and displays
unsteadiness. In Ghia et al. [9], results for a wide range
of Re up to 10 000 are presented to be steady. Numerical
results obtained by high-accuracy combined compact differ-
ence (CCD) schemes presented in Sengupta et al. [11,12]
indicate creation of a transient polygonal vortex at the core,
with permanent gyrating satellite vortices around it for Re =
10 000 using a (257×257) uniform grid. The same sixth-order
CCD scheme has been used in a sequential computing mode
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FIG. 1. The schematic of the computational domain and location
of sampling point (0.95,0.95) with vortical excitation applied at
(0.02,0.98) for a (257×257) grid.

[13] for (257×257) and (513×513) grids, for a range of super-
critical Reynolds numbers to achieve the following: (i) Trying
to reconcile critical Reynolds numbers for first bifurcation
(Recr1) obtained by different numerical approaches to be in the
same range and (ii) to show that for increasing Re following
the first Hopf bifurcation, the flow in a limit cycle suffers a
secondary instability. This requires computation of the flow
field over a significantly longer time period. The first goal is
met by exciting the flow field with a pulsating vortex inside
the LDC. Here, these aspects are further investigated using
(1025×1025) and (2049×2049) uniformly spaced grids, with
focus on the threshold amplitude of excitation needed to
trigger self-sustained unsteadiness in the cavity, when the
excitation is removed for the (1025×1025) grid.

Use of lower-order methods in obtaining equilibrium flow
results in contaminated eigenvalues for classical bifurcation
studies. However, DNS of NSE [14–16] reveal that the flow
loses stability via Hopf bifurcation with respect to increas-
ing Re. Critical Recr1 and frequencies obtained from DNS
and eigenvalue analysis do not match and such differences
are noted for different DNS results too, for various reasons
explained here. It is shown that Recr1 depends upon the
accuracy of the method and how the flow is established in
DNS [12,16,17]. Impulsively started flow is ideal to study
the dynamics, as it triggers all frequencies at t = 0 [11–13].
These simulations are extremely sensitive to the accuracy of
the method, so much so that parallelization of the code by
Schwarz domain decomposition technique [18] does not allow
one to reproduce the results obtained with sequential comput-
ing, despite having a large number of overlapping points at the
subdomain boundaries. In the present work, we develop a new
parallelization strategy (to be reported elsewhere), which does
not require taking overlapping subdomains, while producing
results which ensures reproduction of sequentially obtained
results.

Unsteadiness for varying parameters are studied in bifur-
cation theory [19] caused by flow instabilities [2], with linear
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FIG. 2. Comparison of computed wall vorticity distribution—ωb

at the top wall for the LDC flow at Re = 9600 at time t = 1750 for
(257×257), (513×513), and (1025×1025) grids.

instability of equilibrium flow and DNS have been used to
evaluate Recr1, which provide scattered values for LDC flow.
Auteri et al. [20] obtained Recr1, using a second-order projec-
tion method along with a second-order backward difference
for time integration, to be between 8017.6 and 8018.8. The
authors added that an analysis beyond first bifurcation led
them to suppose that the system passes through a second
Hopf bifurcation for a second critical Reynolds number lo-
cated in the interval (9687, 9765). Various researchers also
noted different value of Recr1: equal to 8031.93 in Sahin
and Owen [21] and 7972 in Cazemir et al. [22] using a
finite-volume method. Bruneau and Saad [23] noted this to
be in the range of 8000 to 8050, without showing any relevant
bifurcation diagram, while using (1024×1024) grid for third-
and fifth-order spatial discretization method. However, the use
of three time-level Gear method [23], produces spurious mode
to affect global results. Also of interest are high-accuracy
methods to report relatively higher values of Recr1. However,
it is noted that very diffusive methods produce very high Recr1,
by attenuating disturbances to delay unsteadiness [9,24,25].

CCD scheme has been used to explain multiple Hopf
bifurcations [13,17]. Osada and Iwatsu [16] have identified
Recr1 value given by 7987 ± 2%, obtained using compact
scheme on nonuniform (128×128) and (257×257) grids. This
value is based on a linear interpolation of data from two grids
in Fig. 3 for u-component of velocity at the core of LDC [16].
The figure shows grid dependence of the computed results,
as the equilibrium amplitude squared (A2

e) versus Re curves
have diverging slopes. Thus, these are grid-dependent results
[16], as is also noted here between (257×257) and (513×513)
grids. We will provide justification for such differences, while
producing new insight about high-accuracy computing of
oscillator type flows. Here all computations are obtained by
starting from quiescent condition at t = 0.

There are also widely different Recr1 reported [26], where
Recr1 is in the range of 10 000 to 10 500 obtained by regu-
larizing the lid velocity (by removing corner singularities at
the top lid) using compact scheme. As noted earlier, the onset
of flow instability is due to distributed aliasing error causing
grid-scale oscillation near the top lid. In addition, there is the
Gibbs’ phenomenon present at the corners of LDC, which
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FIG. 3. Illustration of the vorticity dynamics at supercritical Re = 8750 for the LDC problem solved using a (257×257) grid. The plotted
vorticity time series is sampled at (0.95,0.95). Vorticity contours plotted at the indicated times shows a well defined triangular vortex during
transient stages.

is identical to such discontinuity in the actual flow. This is
due to the fact that the corner points must have zero vorticity
topologically, while the neighboring points will have high
wall vorticity values. This discrete jump between the corner
point with its neighbor gives rise to Gibbs’ phenomenon. This
is primarily present at the top corners, and regularizing the
lid velocity can reduce the discrete jump, but cannot remove
it altogether. Poliashenko and Aidun [27], however, reported
a value of Recr1 = 7763 ± 2% using a commercial FEM
package, which has sources of large numerical error. Peng
et al. [28] reported a value of Recr1 = 7402 ± 4% using finite
difference method by Marker and Cell (MAC) technique.

To obtain Recr1, DNS is preferred over eigenvalue analysis
(which performs temporal analysis assuming all points to have
identical time variation), while true spatiotemporal dynamics
is traced in DNS. In the schematic in Fig. 1, vorticity time
series is sampled at (x = 0.95, y = 0.95). This point is pre-
ferred for analysis purpose [11–13,17].

Here, high-accuracy CCD scheme is used along with re-
fined (1025×1025) and (2049×2049) grids without regulariz-
ing the lid velocity. To the knowledge of the authors, these

are the highest resolved simulations for 2D LDC problem
provided with detailed analysis of nonlinear and error dy-
namics. As noted in Fig. 12 of Lestandi et al. [13], the two
grids with (257×257) and (513×513) points produce different
Recr1, even with subcritical excitation by a pulsating vortex
placed at (x = 0.02, y = 0.98). The threshold amplitude of
excitation for subcritical Reynolds numbers are shown here
to be different for different grid resolutions. This has been
critically studied for all the grids used here.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

DNS of the 2D flow is carried out using the stream
function-vorticity formulation of the NSE given by

∇2ψ = −ω, (1)

∂ω

∂t
+ ( �V · ∇)ω = 1

Re
∇2ω, (2)
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FIG. 4. Illustration of the vorticity dynamics at super-critical Re = 9600 for the LDC problem solved using a (1025×1025) grid. The
plotted vorticity time series is sampled at (x = 0.95, y = 0.95). Vorticity contours plotted at the indicated times show well defined pentagonal
and triangular vortices during the transient stages.

where ω is the nonzero out-of-plane component of vorticity
for the 2D problem. The velocity is related to the stream
function by �V = ∇× ��, where �� = [0 0 ψ]. The parameters
L and U are also used as length and velocity scales, respec-
tively, to nondimensionalize NSE. For solving Eqs. (1) and
(2), following boundary conditions are used: ψ = constant

is prescribed on all the four walls of LDC to satisfy no-slip
condition. The wall vorticity is given exactly as, ωb = − ∂2ψ

∂n2 ,
where n is the wall-normal coordinate chosen for the four
segments of the cavity. The wall vorticity, ωb, is calculated
using Taylor’s series expansion at the walls with appropriate
velocity conditions at the boundary segments. The top lid
moves horizontally with a unit nondimensional velocity to
provide the lead truncation error in calculating ωb as �n

3
∂ψ3

∂n3 .
In Fig. 2, we show variation of ωb with x for the top lid,
which shows the maximum amplitude of wall vorticity to scale
inversely with �n. To solve the discretized Eq. (1), a fast
and convergent elliptic PDE solver, Bi-CGSTAB method [29]
has been used. The convection and diffusion terms of Eq. (2)
are discretized using the CCD method [11–13] to obtain

both first and second derivatives, simultaneously. The relevant
details about CCD and other compact schemes have been
discussed in Ref. [30]. For time advancing Eq. (2), four-stage,
fourth-order Runge-Kutta (RK4) method is used. The CCD
scheme has been analyzed for resolution and effectiveness
in discretizing the diffusion terms along with the dispersion
relation preservation properties for 1D convection equation
[11,12]. The CCD scheme with RK4 method has been charac-
terized for convection-diffusion equation in Ref. [31] to show
the importance of Peclet number. A nondimensional time-
step of �t = 0.001 is used to solve for the lower resolution
grids, while the (1025×1025) grid uses �t = 0.0005 for the
computations reported here. For the finest grid used here,
an even more refined time step of �t = 0.0001 is used to
counteract any adverse effects of such a refined grid due to
expressing the diffusion operator via the Peclet number. It
has been noted that the final limit cycle behaves in a similar
fashion even though the time step is changed, the difference
being only in the appearance of the instability of the limit
cycle at different time ranges with change in �t .
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FIG. 5. Plot of vorticity time series and vorticity contours showing the dynamics of flow inside LDC at different times for Re = 9600 for
(a) (257×257), (b) (513×513), and (c) (1025×1025) grids.

III. DYNAMICS OF SINGULAR LDC FLOW
WITHOUT EXCITATION

The flow dynamics inside the LDC is presented for a super-
critical Re = 8750 computed for the (257×257) grid in Fig. 3,
with the help of vorticity time series sampled at (x = 0.95,
y = 0.95) (shown in the center). In the time series, identified
various regimes are due to the different dynamics occurring
during flow evolution. For example, in Range-1a in the time
series, plotted vorticity displays high-frequency transient vari-
ations and is followed by banded relatively lower-frequency
variations, identified as Range-1b. In this range, it is possible
to see coherent vortices inside the cavity. However, such struc-
tures at the core are highly transient and the time series shows
a decay of the signal near the terminal time of Range-1b, i.e.,
the vorticity fluctuation reduces till it settles down to a steady
value. This steady value is maintained in Range-2. The flow

then suffers a temporal instability, evidenced by the growth
of vorticity in Range-3. Finally, the flow attains a stable limit
cycle oscillation stage, where one notices nonlinear saturation
of the growing vorticity.

For the time series in Fig. 3, the linear growth in Range-3
is followed by nonlinear saturation, which has been mod-
eled often by the Stuart-Landau equation [32]. An objective
discussion on the applicability of this model is given in
Refs. [17,33,34]. We remark that the results obtained by
high-accuracy solution of time-dependent NSE in Range-2
and that obtained from solution of steady NSE do not match.
Due to this, in the following linearly unstable range, solutions
obtained by time-dependent NSE in Range-3 would also not
necessarily be the same, which is obtained from the eigen-
value analysis of steady NSE solution. Also mismatch in
Ranges-2 and -3 is due to differences in accuracy of numerical
methods. Steady-state solution obtained often for very high
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FIG. 6. Plot of vorticity time series and vorticity contours showing the dynamics of flow inside LDC at different times for Re = 9700 for
(a) (257×257), (b) (513×513), and (c) (1025×1025) grids.

Re is due to the diffusive nature of numerical methods, as
have been reported for Re = 20 000 [24,25]. The sensitive
dependence of the solution of a nonlinear dynamical system
to initial condition (here the equilibrium states obtained in
two ways) is well known and for flows governed by NSE is
recorded in Ref. [30]. Eventually, the dynamical system settles
down to a limit cycle for the time-dependent NSE solution.

Next, the flow dynamics inside the LDC is presented for a
supercritical Re = 9600 obtained with the (1025×1025) grid
in Fig. 4. Here, the flow does not attain a quiescent state
(Range 2–3 in Fig. 3). Instead, a linear growth is observed
after the initial vorticity fluctuations, which quickly attains
saturation and decay as seen in the time between 200 and
300. After this period, the flow suffers an instability and
nonlinear saturation during t = 300 and 500. At this stage the
flow suffers a secondary instability, witnessed by a growth

and a multi-periodic nature during t = 500 and 1000. The
amplitude envelope decays slowly with time and settles to a
stable limit cycle oscillation beyond t = 1750. These results
are obtained using the new parallelization strategy and it has
been calibrated with the serial code for identical grids for a
Reynolds number 10 000.

The flow dynamics is qualitatively similar using refined
grid for supercritical Reynolds numbers (Re � Recr1) with
the system suffering multiple Hopf bifurcations. It should
be noted that Recr1 is different for the two grids studied in
Ref. [13]. This observation is further reinforced by the com-
putations using (1025×1025) grid for which the flow becomes
unsteady without any excitation at Re(=Recr1) ≈ 9530. At
Reynolds numbers below this, the flow is steady without any
excitation. When an explicit excitation is applied to the system
at subcritical Re, the flow suffers primary instability and
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FIG. 7. Plot of vorticity time series obtained at location (0.95,0.95) and its corresponding FFT spectrum for (a) Re = 9600 and (b)
Re = 9700.

displays a limit cycle above a threshold amplitude, even after
the excitation is withdrawn. As Recr1 for the (1025×1025)
grid is higher compared to (257×257) and (513×513) grids,
we present results for Re = 9600 and 9700 as the flow is un-
steady for the all these three grids to study the grid sensitivity
on the flow dynamics.

In Figs. 5 and 6, the vorticity field at different time instants
are shown for the three grids for Re = 9600 and 9700, respec-
tively. Time series sampled at the point (0.95,0.95) are shown
in the center of the figures. Different dynamics are noted
for the grids during the initial and linear instability stages,
as seen by comparing the frames at t = 100 and t = 400
for both the Reynolds numbers. One notes that the vorticity
contours for the (257×257) grid are different from the other
grids during this period. This is due to the dominance of
aliasing error at the top lid boundary, as seen from Fig. 2. The
finer grids with (513×513) and (1025×1025) show reduced
aliasing error. One also notes from Fig. 2 that by refining
the grid, progressively higher vorticity gradient is obtained at
the top corners, ( ∂ω

∂x
), which will make the equilibrium flow

somewhat different for different grids, leading to difference
in dynamics. This may make the flow grid-dependent and
can explain the grid sensitivity noted for computations with
the relatively coarser grids with (257×257) and (513×513)
points. We will revisit this aspect of grid dependence, with
results shown for a more refined grid with (2049×2049)
points. The difference in dynamics noted for the (257×257)
grid is due to dominant aliasing error, which determines the
dynamics by introducing spatiotemporal scales for the flow.
However, for the (513×513) and (1025×1025) grids, aliasing
error is reduced and absent, respectively, and the vorticity dy-
namics and bifurcation sequences are by Gibbs’ phenomenon.
We note in Fig. 5, a stronger secondary instability for the
(1025×1025) grid (seen from the frame at t = 400), as com-
pared to the coarser grids. One notes a distinct, pentagonal
vortex at t = 400 for this grid. This is due to capturing fine
spatial scales by the increased resolution of the grid and
the localized nature of excitation from the top two corner
points by Gibbs’ phenomenon. One also notes the secondary

instability persisting for a longer time for this finer grid, as
noted in the vorticity time series.

Further insights into grid sensitivity is obtained from
Figs. 7(a) and 7(b), where vorticity time series and corre-
sponding FFT are compared for the three grids. For Re =
9600, we see that the flow suffers a secondary instability
at similar times for both the (513×513) and (1025×1025)
grids, both the cases are not affected by aliasing error. For
the (1025×1025) grid, the instability continues to persist for
a longer time. However, for the (257×257) grid a delay is
noted for the secondary instability, for which the effects of
Gibbs’ phenomenon will be the least. The corresponding FFT
for the (513×513) and (1025×1025) grids are similar in terms
of the structure and the number of peaks, while the (257×257)
grid shows fewer peaks. Similar observations are noted for
the secondary instability for Re = 9700 case. One also notes
the multimodal nature of the time-series for the (1025×1025)
grid. This is also reflected in the FFT plots which show the
presence of multiple peaks for this case. This is because the
flow bypasses the first two bifurcations for this finer grid. In
Fig. 6 of Lestandi et al. [13], multiple Hopf bifurcations are
noted for the LDC flow and it is shown that for (257×257)
grid, a third bifurcation occurs at around Re = 10 500.

IV. SUBCRITICAL INSTABILITY
VIA FORCED EXCITATION

Simulations of unsteady NSE for LDC reported in
Ref. [13] show the flow to remain steady for Re < Recr1. It is
noted that the Re for which the flow becomes unsteady with-
out any external excitation, is dependent on the grid, for which
aliasing error is dominant. In Ref. [13], subcritical instability
has been shown for both the (257×257) and (513×513) grids,
where it is shown that the flow becomes unsteady when
an external excitation by a pulsating vortex is applied. For
certain amplitudes of excitation it is also reported [13] that
the flow continues to remain unsteady after the withdrawal
of excitation, showing self-sustained unsteadiness. This is
demonstrated later, for the case of (1025×1025) grid for
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FIG. 8. Plot of vorticity time series at location (0.95,0.95) for
the external vortical excitation imposed at (0.02,0.98) for subcritical
Reynolds numbers. The results are for (1025×1025) grid and the
amplitude of excitation is indicated by Aex.

indicated subcritical Re values. The external vortical exci-
tation used here is of the form, ω = Aex sin(2πfot ) and is
applied at the point (0.02,0.98) as shown in Fig. 8.

The reason for unsteadiness by subcritical instability
caused due to imposed excitation is explained next. While
the flow may admit instability, in the absence of excitation,
the response of the dynamical system will only show the

FIG. 9. Vorticity time series for Re = 9400 at the indicated ex-
citation amplitudes and the band of threshold amplitude of vortical
excitation for the (1025×1025) grid.

Reynolds number

A
m

p
lit

u
d

e,
A

ex

8000 8500 9000 9500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

257x257
513X513
1025X1025

FIG. 10. Threshold amplitudes of pulsating vortical excitation
needed for the three grids used here, having (257×257), (513×513),
and (1025×1025) points.

equilibrium flow. Thus, any accurate method for LDC will not
display unsteadiness, unless it is enforced explicitly or implic-
itly. For a neutrally stable numerical method, in the absence
of implicit excitation by numerical errors, explicit excitation
is required to make the flow unsteady for Re � Recr. For
super-critical Re, unsteadiness is caused by implicit sources
of numerical error. Existence of a Recr1 for a numerical
method implies that the existing numerical errors, including
the Gibbs’ phenomenon, for a subcritical Re is not adequate
to excite physical instability. Thus for high-accuracy methods,
it is possible to trigger subcritical instability via an external

FIG. 11. Fast Fourier transform of the vorticity time series for
Re = 8500 and amplitude of excitation Aex = 1 for different ex-
citation frequencies: fo = 0.173, fo = 0.41, and fo = 0.6133, for
257×257 grid.
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TABLE I. Natural frequencies and amplitudes for (1025×1025) grid.

Re F1 F2 F3 F4

8500 0.4466 (792.41) 0.8909 (112.76) 1.3298 (6.32) 1.7662 (1.1797)
8600 0.4488 (818.24) 0.8912 (89.22) 1.3399 (7.12) 1.7709 (0.1791)
8700 0.4489 (558.21) 0.8908 (78.66) 1.3397 (9.58) 1.7863 (6.6108)
8800 0.4466 (1012.83) 0.8933 (132.01) 1.3410 (9.84) 1.784 (0.71755)
8900 0.4467 (1045.04) 0.8934 (128.67) 1.3330 (15.81) 1.7836 (2.0636)
9000 0.4466 (1040.57) 0.8867 (144.76) 1.3330 (21.98) 1.7865 (2.9502)
9100 0.4466 (1002.79) 0.8867 (199.46) 1.3333 (24.70) 1.7733 (1.9632)
9130 0.6199 (693.27) 1.2330 (30.23) 1.8533 (5.67) 2.4735 (0.6432)
9180 0.6199 (690.33) 1.2330 (35.98) 1.8533 (5.81) 2.4665 (1.5347)
9200 0.6199 (685.31) 1.2330 (37.01) 1.8534 (6.29) 2.4667 (1.5134)
9300 0.6133 (761.60) 1.2333 (37.66) 1.8466 (5.54) 2.4666 (1.5297)
9400 0.6133 (938.01) 1.2334 (45.07) 1.8467 (10.02) 2.4678 (1.9155)
9500 0.6136 (111.35) 1.2334 (35.13) 1.8467 (14.34) 2.461 (2.183)
9530 0.6133 (1164.22) 1.2266 (39.81) 1.8467 (11.01) 2.46 (0.592)
9580 0.4466 (1290.87) 0.8866 (235.35) 1.3267 (33.41) 1.7667 (6.0165)
9600 0.4467 (1042.69) 0.8867 (207.42) 1.3333 (30.69) 1.7733 (2.5189)
9650 0.4466 (1355.25) 0.7133 (273.16) 0.8867 (214.50) 0.273 (190.895)
9700 0.4415 (1402.38) 0.7166 (318.22) 0.8845 (253.11) 0.9865 (58.42)
9800 0.4412 (1396.35) 0.7134 (637.57) 0.8811 (260.11) 0.9865 (58.42)
9900 0.4401 (1334.84) 0.7133 (774.45) 0.8810 (228.92) 1.1533 (58.8711)
10 000 0.4400 (1251.31) 0.7133 (835.603) 0.88 (181.341) 0.5467 (172.383)

unsteady disturbance source for a certain range of Re below
Recr1.Further observations regarding the nature of excitation
on subcritical instability can be drawn from Figs. 13 and
14 of Ref. [13], where unsteadiness is self-sustaining above
a certain amplitude of the imposed external disturbances.
Thus, there must exist a threshold value of the excitation
amplitude above which the instability is self-sustaining and
this is established next. We further establish that amplitude of
vortical excitation is a primary variable, while frequency of
excitation is not so, provided it is not too low.

A. Threshold amplitude of excitation for primary instability

In this section, we determine the threshold amplitude
for subcritical Reynolds numbers computed for (257×257),
(513×513), and (1025×1025) grids by a successive bracket-
ing approach. Essentially, we identify a range of amplitudes,
above which the excited unsteadiness is self-sustained (i.e.,
after the withdrawal of excitation), while below the lower limit
of amplitude, the excited flow relaxes back to the unexcited
state, when the external excitation is removed. Operationally,
an equilibrium solution is obtained first for each grid for a
chosen subcritical Re by solving the NSE until the solution
becomes steady. This equilibrium flow is then subjected to the
vortical excitation as defined earlier, for a pair of two different
amplitudes, while the vorticity is monitored at the sampling
point at (0.95,0.95). We denote the pair as (Aex,l , Aex,u),
where Aex,l is lower than Aex,u. When the vorticity time-series
of the excitation cases reach a limit cycle state, excitation is
switched off and the vorticity time series is monitored to check
whether unsteadiness persists or not. If for the chosen Aex,l ,
the flow inside the LDC returns to its unexcited state, then this
is chosen as an estimate for the lower bracket. Otherwise, the
excitation amplitude is reduced and the vorticity time series

is monitored as before, for with and without the excitation
sequence to locate the amplitude for which the switched-
off condition reaches a quiescent state. Similarly, Aex,u is
also lowered, if the vorticity time-series shows sustained
unsteadiness after removal of excitation. The excited flow is
computed and the vorticity time series is monitored to check
for sustained unsteadiness, when the excitation is switched
off. This process is repeated, as long as the unsteadiness is
noted to be self-sustaining, and any further reduction will
quench the unsteadiness. This provides the threshold limit for
Aex,u above which the flow displays sustained unsteadiness
for the excited cases. After determining the initial bracket, one
can further refine the search for accurate threshold amplitude
limits, as has been performed and shown in Fig. 9. We deter-
mine the threshold amplitude, while keeping the frequency of
excitation as constant.

In Fig. 9, the threshold amplitude curve (center frame) is
presented for the (1025×1025) grid, for different subcritical
Re. In the center-frame, two curves are seen, with the upper
curve corresponding to Aex,u, and the lower curve represents
Aex,l , respectively. The corresponding vorticity time series at
the sampling point for the upper and lower curves are demon-
strated in the top and bottom panels of Fig. 9 for Re = 9400.
It is clear that when the LDC is excited with an excitation am-
plitude Aex,l = 0.05, first the equilibrium flow is destabilized,
and the flow field displays high vorticity fluctuations. This
settles down to a stable limit cycle oscillation (LCO), after t =
150. However, on withdrawing the excitation, the vorticity
fluctuations quickly decay to zero, as noted in the bottom
frame of Fig. 9. For the excitation amplitude case with Aex,u =
0.065, the flow field continues to remain unsteady indefinitely
after removal of excitation, as noted in the figure shown by
dark lines. Two conclusions can be drawn from these thresh-
old amplitude curves: (i) The instability is self-sustaining at
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FIG. 12. Bifurcation diagram for the three grids with (257×257),
(513×513), and (1025×1025) points.

and above the upper threshold amplitude, given by Aex,u, and
(ii) the upper and lower brackets are functions of Re.

It is easy to see in Fig. 9, that lower the subcritical Re,
higher is the amplitude of excitation required for sustained
unsteadiness, after removal of the source of excitation. Also
the threshold amplitude decreases as Re is increased, due to
higher receptivity of the flow at higher Re. Thus, the same
numerical error present will cause the primary instability
earlier for higher Re. When external excitation is superposed
with the implicit numerical disturbances (including the Gibbs’
phenomenon) of the computing method, the flow is even more
receptive for unsteadiness via instability at lower imposed
excitation amplitude.

The influence of grid resolution on Aex,u can be seen in
Fig. 10, which is shown for the three grids. It is easily noted
that at the same subcritical Re, the excitation amplitude is the
lowest for the coarsest grid (257×257), while it is the highest
for the finer (1025×1025) grid. This supports the previous
observation that the finer grid has lesser amount of numerical
error to trigger instability, and hence the onset of unsteadiness
is noted for higher Re with finer grid. This aspect of numerical
errors along with Gibbs’ phenomenon, provide the seed of
instability and bifurcation is typical of this flow. It is noted
that the threshold amplitude of imposed excitation is zero
for the Recr1 = 9580 for the (1025×1025) grid. This means
that the (1025×1025) grid bypasses the first two bifurcations
displayed by the (257×257) grid, which occurs at lower Re
values.

B. Frequency spectrum of subcritical excitation

Response of LDC and its Strouhal number obtained by
exciting the flow with three different frequencies (fo = 0.173,
0.41, and 0.6133) are shown in Fig. 11. The case is for
Re = 8500, and the excitation amplitude used is Aex = 1,
which is same for all the cases. Results are obtained using the
(257×257) grid and the spectrum of the vorticity time series
are compared on the right-hand side of the frame, between
the exciter-on and exciter-off cases. We note that for very low
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FIG. 13. Comparison of wall vorticity distribution at the top lid
for Re = 10 000 at t = 1800—(1025×1025) and (2049×2049) grid
points by using NCCD and Lele scheme.

exciting frequencies (fo � 0.01), the flow is not receptive to
vortical excitation, and the results are not shown. However, for
fo > 0.02, the flow exhibits a stable LCO following the pri-
mary instability. It is noted that the fundamental frequency of
LDC is fN = 0.44. Figure 11 shows three cases of excitation
frequencies, and one observes the spectrum to be rich with
higher harmonics of fN and f0, which is typical of nonlinear
dynamical system showing multiple modes interacting. With
increase in exciting frequency, the response field displays
larger number of peaks. When the excitation is withdrawn,
irrespective of different vortical exciting frequencies, the dy-
namical system attains stable LCO with fN = 0.44 and its
higher harmonics at 2fN , 3fN and so on. The same behavior
is noted for finer grids, although results are not shown, with
the spectrum for different Re cases shown in Table I.

V. BIFURCATION DIAGRAM FOR DIFFERENT GRIDS

In Fig. 12, we have shown the bifurcation diagram for the
three grids with (257×257), (513×513), and (1025×1025)
points. This diagram contains information for all the cases,
with and without any external excitation, to show similarities
and differences with results presented specifically in Ref. [13].
Some of the salient features of the diagram are: (i) The flow
with the coarsest grid (257×257) experiences bifurcations for
Recr1 = 8030 (with subcritical excitation), Recr2 ≈ 9400 and
Recr3 ≈ 10, 500; the grid with (513×513) points, the bifurca-
tion begins at Recr1 = 8300 (with subcritical excitation), and
the next one occurs at Recr2 = 9450 with another occurring
at Recr3 ≈ 9700. The finer grid with (1025×1025) points ex-
hibits Recr1 = 8500 (with subcritical excitation) and the next
one occurring for Recr2 ≈ 9130 (also with a subcritical excita-
tion), while the last one noted without excitation is for Recr3 ≈
9580. (ii) The reasons for obtaining different bifurcation
sequences are due to the basic differences of the equilibrium
flows, and the errors (including the Gibbs’ phenomenon),
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FIG. 14. Plot of vorticity time series and vorticity contours showing the dynamics of flow inside LDC at different times for Re = 10 000
for (a) (1025×1025—NCCD Scheme), (b) (1025×1025—Lele Scheme), and (c) (2049×2049—NCCD Scheme).

which triggers the instability. (iii) For the grids, we note
equilibrium amplitudes to visit a branch from Re ≈ 9100 to
9530 with lower amplitudes, as compared to the amplitude
outside this range. (iv) Considering subcritical excitation, all
the three grids show almost identical amplitudes of the LCO
in the range: 8700 � Re � 9100, showing the relevance of
subcritical excitation. (v) We also note that in none of the
grids, the bifurcation amplitudes start smoothly from Ae =
0, even when subcritical excitation is considered to initiate
instability.

VI. TOWARD GRID-INDEPENDENCE
AND UNIVERSALITY

We have noted the typical features of LDC flows over a pe-
riod time, mostly using NCCD scheme [11–13,17,33], which

have not been reported before in computations. However, the
presence of polygonal core vortex and specifically triangular
vortex has been known to be created in laboratory experiments
in Refs. [35,36]. Such polygonal structures have been noted
in the atmosphere, above the north pole of Saturn in Ref. [37].
Any shear-driven confined flow can produce such polygonal
structures. However, such structures in LDC flow have been
reported mostly using combined compact difference scheme,
although some other researchers using different methods have
also reported triangular core vortex in Refs. [38,39]. To show
that the polygonal vortex is not so difficult to obtain, here we
show some results using Lele’s compact scheme [40] in the
parallel version for Re = 10 000.

The main reason that Lele’s scheme has been used rarely
is due to the fact that compact schemes require boundary

013305-11



SUMAN, VIKNESH S., TEKRIWAL, BHAUMIK, AND SENGUPTA PHYSICAL REVIEW E 99, 013305 (2019)

closure schemes, and the ones proposed in Ref. [40] produces
antidiffusion [30,41] and leads to solution blow-up due to
numerical instability, especially for internal flows. This issue
of antidiffusion causing numerical instability is common with
compact schemes, and has been shown and solution provided
in Refs. [30,41]. When one such solution was used with Lele’s
scheme in a (257×257) grid, the solution blew up due to
aliasing error and results are recorded in Ref. [30]. In the
present exercise, we have therefore used a refined grid with
(1025×1025) points to avoid aliasing problem without any
specific dealiasing technique. The success of Lele’s scheme is
due to better boundary closure scheme, along with a refined
grid used. Also to show the effects of grid-independence,
we also have run another case using NCCD scheme with
(2049×2049) grid-points.

In Fig. 13, we plot the wall vorticity at the top lid com-
paring the three cases for Re = 10 000, at t = 1800. It is
readily apparent that the vorticity variation in the interior
points is identical. We have already noted that for LDC flow,
the symmetry of the geometry and the ninety degree bend at
the corners demands that the vorticity at these corner-points
must be equal to zero, following the kinematic definition
of vorticity, derived from the stream function value being
constant on the wall. However, immediate points on either
side of the corners will have nonzero wall vorticity. As the
wall-vorticity value is determined by the grid spacing at
the wall, one can expect this quantity to be the same for
Lele’s scheme and NCCD scheme using identical number of
grid points. We also note that the wall vorticity will not be
symmetric about the mid-plane, as the top lid motion will
contribute to asymmetry, as noted in Fig. 13. One also notes
that the finest grid used here with (2049×2049) points will
have highest value of wall vorticity at the second, and the
second-to-last points, which are also near to the respective
wall. This behavior of wall vorticity taking larger values with
grid refinement is an attribute of impulsive start, and there is
no theoretical upper limit to this value. These large values at
the second and second-to-last point for the wall-vorticity is
responsible for the Gibbs’ phenomenon becoming stronger
and stronger with grid refinement. Thus, refining the grid
reduces aliasing error, while it increases the adverse effects
of Gibbs’ phenomenon described for compact schemes in
capturing shocks and discontinuity [42].

In Fig. 14, vorticity contours are plotted for the three
cases for Re = 10 000 and shown at the indicated times. The
vorticity time series at the sampling point is shown in the
center of the clusters for all the three cases. As noted earlier,
following the primary instability, during the LCO one notices
the polygonal core vortex, which happens to be a pentagonal
vortex for these refined grids at t = 400. The pentagonal
vortex morphs into a triangular vortex, when the primary
LCO suffers secondary instability, as shown in the frame for
t = 850. Presence of the polygonal vortex for both the refined
grid, indicates the grid-independence of the flow topology for
these grids. Only notable differences at different frame can
be related to effects of dispersion being responsible for the
time-shift of identical events, with respect to each other.

In Fig. 15, the spectrum of the time series shown in
Fig. 14 are shown, which show a very strong similarity
among the three plots, specifically, between the NCCD and
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FIG. 15. Fourier transform of vorticity time series for Re =
10 000 using two grids: (1025×1025) and (2049×2049) with NCCD
and Lele’s schemes.

Lele’s schemes used with (1025×1025) grid. The five dom-
inant modes are given in Table II, and the tabulated values
clearly indicate the strength of the peaks to become pro-
gressively stronger due to increasing severity of Gibbs’ phe-
nomenon [42] due to grid refinement. One notes that physical
Gibbs’ phenomenon can be of different magnitude, from the

TABLE II. Leading natural frequencies and amplitudes for the
two methods using the displayed grid.

NCCD Lele NCCD
Frequency (1025×1025) (1025×1025) (2049×2049)

F1 0.440 (1619.60) 0.440 (1631.39) 0.440 (7908.77)
F2 0.710 (1023.16) 0.709 (1033.6) 0.715 (4240.39)
F3 0.275 (378.13) 0.275 (383.80) 0.270 (1719.27)
F4 0.545 (259.09) 0.545 (249.47) 0.545 (1280.19)
F5 0.880 (231.16) 0.880 (221.38) 0.880 (1227.21)
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numerical one, which depends on grid refinement. However,
as is typical of any other bluff body flows, universality is de-
fined in terms of Strouhal number [17,34], and that is clearly
noted in Fig. 15 and Table II. Interestingly, the Strouhal
number in this case is given by the frequency value of 0.440,
whose first superharmonic is noted as the fifth dominant
mode. As one noted for coarser grid in Ref. [30], here also
the spectrum of results for Lele’s scheme shows wider band
with peaks at higher frequencies, which are not present for
the NCCD scheme, with both the grids.

VII. SUMMARY AND CONCLUSION

We summarize the major observations of the present re-
search as follows: (i) The comparative study performed here
displays the basic fact that the bifurcation sequences are
universal with respect to the dominant frequency, as is usually
the case for vortex-dominated flows [17,34]. This is clearly
established in Fig. 15 and Table II, where we have also shown
results for a finer grid with (2049×2049) points. (ii) We have
shown the effects of various sources of errors, namely, the
aliasing error and error introduced due to Gibbs’ phenomenon.
Of course, one has to account for truncation errors, which
becomes significantly lower for the used compact schemes.
Moreover, the reported computations are for extra-refined
grids using (1025×1025) and (2049×2049) points, which
have not been shown before. (iii) The reason for the differ-
ences among the different grid cases is due to differences in
the equilibrium flow initiated by the created vorticity on the
top wall, which is highlighted in Figs. 2 and 13. Finer grids
experience larger discontinuous jumps at the corners of the
top lid causing the Gibbs’ phenomenon. The source of error
is qualitatively different for the coarsest grid with (257×257)
points, which experiences visible aliasing error. We note that
by regularizing the corner singularities, a significantly higher
Recr1 = 10 000 to 10 500 have been reported earlier [26],

which can control both aliasing error and Gibbs’ phenomenon.
This is explained here for the first time. For the refined
grid, one notices pentagonal core vortex for the (1025×1025)
and (2049×2049) grids, which subsequently morphs into a
triangular vortex, shown in Figs. 5, 6, and 14. Whereas, the
(257×257) grid is known to support only a triangular core
vortex in transient state. (iv) For all the grids, one notices
a range of Re for which the flow displays self-sustained
unsteadiness caused by imposed monochromatic excitation
inside the domain, which does not disappear, when the ex-
citation is switched off. This necessitates defining a threshold
amplitude for the observed phenomenon in Figs. 8 and 9. (v)
The effects of grid sensitivity for different refinements is re-
flected in the requirement of different threshold amplitudes of
subcritical excitation for self-sustained unsteadiness displayed
in Fig. 10. (vi) The dynamics is noted to be independent of
frequency of excitation for a given grid, as shown in Fig. 11
for the coarsest grid. (vii) As noted before [13], one notices
instability of LCO for all the three grids, as shown in Figs. 3–6
and 14. (viii) The subcritical excitation cases shown in Table
1 and Figs. 8 and 11, suggest the possibility of finding the
natural frequency of the fluid dynamical system, by exciting
the system at a frequency with sufficient amplitude and then
removing the excitation after the LCO attains a steady state.
Thereafter, the dynamical system displays self-sustained LCO
at its natural frequency. Present study of nonlinear dynamics
of flow in LDC is based on high-accuracy parallel computing
of Navier-Stokes equation, which show delay of bifurcation
as the grid is refined. There is another novel approach of
studying the same flow by variations of lattice Boltzmann
method (LBM) [43], which display numerical instability at
Reynolds number which is significantly lower than that is
reported using solution of Navier-Stokes equation. As these
LBMs are very fast, it would be interesting to see refinement
of the methods with results being in conformity with the
present high-accuracy approach
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